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Preface

Between 2010 and 2014, the European-funded esf-cost Action Time In 
MentaL ActivitY: Theoretical, behavioral, bioimaging, and clinical perspectives 
(timely) aimed at creating an international network of researchers working 
on timing and time perception, but it also started to address questions and is-
sues that had not been attended to-date. One recurring issue was consistently 
pointed out to us particularly by junior researchers and students: the difficulty 
in acquiring theoretical understanding and practical advices about the vari-
ous methods utilized to measure timing in behavior. The underlying problem 
was the typical spread of information in academia, where senior researchers 
passed their theoretical and practical knowledge to junior researchers in their 
lab or junior researchers were given a multitude of papers and sources so that 
they can figure out on their own how to conduct a given timing task. The theo-
retical knowledge was publicly available, but the practical knowledge was con-
fined to a handful of labs where it was passed on from researcher to researcher. 
Only by being taught by someone in the lab (or by extensive trial-and-error) 
one could achieve the hands-on practical knowledge to correctly apply these 
research methods, handle the problems one normally encounters in their use, 
and avoid their potential pitfalls. A consequence of the limited spread of prac-
tical knowledge also led students that learned a given method to end up using 
that method for the majority of their research for the rest of their career with-
out being able to integrate new techniques into their research.

In timely, we aimed to provide hands-on methodological training on a 
large array of timing research methods to a wide audience by organizing a 
training school on Timing and Time Perception: Procedures, Measures, & Appli-
cations that was held in Corfu, Greece, between the 4th and the 8th of February 
2013. During this event, numerous of the principal experimental tasks and data 
analyses employed to measure some aspect of timing behavior were presented 
theoretically and practically, with both talk and hands-on sessions. In a series 
of presentations by leading experts in the field, junior researchers were taught 
how to conduct, for example, a motor synchronization task, what program-
ming code and equipment to use for running an experiment that could answer 
a scientific question using this method, how to analyze and best display the 
data obtained, the common issues and problems associated with this method, 
etc. The result of such a successful training school was that a team of 40 junior 
researchers got familiarized with all the major methodologies of measuring 
timing behavior and how to analyze these measurements, a learning experi-
ence that took only four days instead of the many years it could have taken 
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with the conventional route. The students could also experience first-hand 
how to use traditional timing methodologies for real world applications such 
as how to study synchrony between the movements of a therapist and his/her 
patient and how the degree of synchrony may determine the speed and effec-
tiveness of ones’ well-being.

Because of the success of the training school and the lack of literature that 
systematically covers methods and techniques on timing and time perception, 
we decided to compile a book composed of contributions where literature, 
theory, practical applications in the form of computer programs, and experi-
mental protocols covered all aspects of learning. This book you are now hold-
ing in your hands and the computer code associated with it is available online 
at https://github.com/ArgiroVat/Timing-and-Time-Perception-Book.

The book is a collection of the most utilized and known methods on  timing 
and time perception. Specifically, it covers methods and analysis on circadian 
timing, synchrony perception, reaction/response time, time estimation, and 
alternative methods for clinical and developmental research. Most of the 
chapters are accompanied by a description of the experimental protocols for a 
sample experiment, the programming code to perform the experiment, sample 
results, and code for the analysis of the data. This practical section of the book 
is open source and will be continuously updated, but it serves as a companion 
to the chapters in the book (thus, first refer to the book, which is also available 
in open access via Brill’s website).

The depth at which the different chapters composing the book treats the 
arguments varies from very introductory to more advanced so as to cover the 
needs of both the junior and senior researcher. We believe this is a represen-
tative source of the current methods on timing and time perception and we 
hope that this will be the first step in future efforts to document experimen-
tal methods and analysis both in a theoretical and in a practical manner. We 
would like to thank the timely network and esf-cost funding for support-
ing this endeavor and our authors, who contributed to this book and patiently 
waited for its completion and publication. We would also like to thank two 
specific individuals: Charlie Zapolski, who graciously provided us with the 
photograph of the book cover and allowed us to modify it freely, and Mary 
Kostaki, who worked on the design of the cover for this book providing us with 
a wonderful result.

Argiro Vatakis, Fuat Balcı, Massimiliano Di Luca and Ángel Correa
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chapter 1

Circadian Timing: From Genetics to Behavior

Patricia V. Agostino, Ivana L. Bussi and Carlos S. Caldart

1 General Aspects of Biological Timing

In order to adapt to a changing environment, most living organisms have es-
tablished the ability to measure time by the development of biological tim-
ing systems. There are different time-scales in which these temporal systems 
operate, thus covering more than 12 orders of magnitude, from microseconds 
to days or even seasons. All of these biological ‘clocks’ use time-keeping mech-
anisms that provide organisms with temporal information crucial to fulfill 
the required biological processes (Buhusi & Meck, 2005; Golombek, Bussi, & 
 Agostino, 2014). Most chapters in this book are focused on temporal process-
ing in the millisecond-to-minutes range, which is crucial to many forms of 
cognitive processing. In the present chapter, we will cover different aspects 
of biological timing in the circadian (i.e., ‘about a day’, 24-h) range. Since cir-
cadian timing is ubiquitous and regulates many physiological and behavioral 
 functions – including cognitive functions – the study of circadian rhythms has 
a deep impact in neuroscience, medicine and health research.

Despite early classical experiments such as De Mairan’s 1729 demonstration 
of an endogenous rhythm in leaf movement of Mimosa plants, among many 
others, the notion of an inner biological clock remained quite elusive until the 
mid-twentieth century (Golombek & Rosenstein, 2010). Several lines of evi-
dence revealed the presence of an endogenous daily biological clock, and the 
term circadian was introduced in the fifties to identify self-sustained rhythms 
under constant conditions.

At present, it is very well known that the circadian clock is an endogenous 
timing system that organizes the environmental oscillations every 24-h. The 
 periodic changes in the light/dark cycle produced by the rotation of the Earth 
influenced the development of circadian rhythms in almost all living organ-
isms. Hence, organisms are able to adapt to and anticipate the changes in light-
ing conditions, thus settling their physiological processes to specific times of 
the day. Some physiological and behavioral functions regulated by the  circadian 
system include the sleep-wake cycle, body temperature, hormone release, and 
gene expression. For example, nearly half of all mammalian genes are rhythmi-
cally expressed in one or more tissues (Yan, Wang, Liu, & Shao, 2008).
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The circadian system have three fundamental characteristics: (1) the pres-
ence of an endogenous oscillator, which generates rhythms with a period close 
to 24-h in the absence of external cues; (2) the capacity to be synchronized by 
rhythmic environmental stimuli; and (3) temperature compensation, which 
means that the biochemical reactions that take place in the circadian clock do 
not change their speed with temperature variations (Buhr & Takahashi, 2013). 
Additionally, the circadian system is composed by three main components that 
allow the regulation of physiology and behavior: (1) an input pathway sens-
ing the environment, (2) an endogenous core oscillator, and (3) an  output path-
way that couples the core oscillator with the rest of the organism. In mammals, 
the main circadian oscillator (called the core or master oscillator) is  located 
in the suprachiasmatic nuclei (scn) of the ventral hypothalamus. The scn 
synchronizes subordinate organ and tissue clocks (called peripheral circadian 
oscillators) using mainly autonomic pathways from the  hypothalamus, driving 
neurochemical, endocrine, and metabolic signaling pathways (Albrecht, 2012).

2 Molecular Components of the Circadian System

The scn neurons have the ability to generate autonomous circadian rhythms 
(Welsh, Logothetis, Meister, & Reppert, 1995). The intrinsic rhythmicity of each 
neuron is based on a molecular oscillation that involves negative feedback 
loops of transcriptional and translational processes (Figure 1.1). In the mam-
malian circadian system, a primary feedback loop is composed by the positive 
elements CLOCK and BMAL1, which heterodimerize (i.e., join themselves to 
form a complex of non-identical monomers) and promote the transcription 
of Per (Period) and Cry (Cryptochrome) genes (negative elements) by acting 
on specific biding sites (E-box sequences) located in their promoter region 
( Gekakis et al., 1998; Munoz, Brewer, & Baler, 2006; Yoo et al., 2005). After tran-
scription and translation, PER and CRY proteins heterodimerize and translo-
cate to the nucleus to inhibit their own transcription by acting on the dimer 
CLOCK/BMAL1 (Ye et al., 2014).

Each transcriptional/translational loop takes near to 24-h to complete. In 
addition to this primary loop, another negative feedback loop contributes to 
clock precision and robustness. In the second loop, the protein REV-ERBα 
moves to the nucleus to repress Bmal1 expression; inversely, Rorα can stimulate 
its transcription, both binding to rore (Retinoic acid-related Orphan  receptor 
Response Element) sites on the Bmal1 promoter (Guillaumond,  Dardente, 
Giguere, & Cermakian, 2005; Preitner et al., 2002; Sato et al., 2004). These 
 oscillations of negative and positive elements generate circadian  rhythmicity, 
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which regulates the circadian output pathway by driving downstream clock-
controlled gene (ccg) expression. The regulation of ccgs is thought to be 
 tissue-specific. Indeed, recent studies on mouse tissues indicate that  roughly 
50% of all genes oscillate with a circadian periodicity (Zhang,  Lahens, 
 Ballance, Hughes, & Hogenesch, 2014). Similar auto-regulatory feedback loops 
were also described for other organisms, including Drosophila, zebrafish, and 
cyanobacteria (Bell-Pedersen et al., 2005). Notably, the circuits that gener-
ate molecular oscillations of circadian clock genes are remarkably conserved  

(4)

(1)

(3)

(2)

(5)

cry
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rorα
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cry

cry

Per

Cry

Rora
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Figure 1.1 The molecular circadian clock. Simplified model of the 
transcriptional/translational feedback loops that constitute 
the mammalian circadian clock. In the primary feedback loop, 
the positive elements CLOCK and BMAL1 initiate transcription 
of target genes containing E-box sequences (1), including 
Period (in mice, Per1, Per2, and Per3) and Cryptochrome 
(Cry1 and Cry2). Once in the cytoplasm, the resulting PER 
and CRY proteins heterodimerize (2) and translocate back 
to the nucleus (3). Negative feedback is achieved by PER:CRY 
heterodimers to repress their own transcription by acting 
on the CLOCK:BMAL1 complex (4). Another regulatory 
loop is induced by CLOCK:BMAL1 heterodimers activating 
transcription of Rev-erbα and Rorα. REV-ERBα and RORα 
subsequently compete to bind rore elements present in Bmal1 
promoter (5). Thus, the circadian oscillation of Bmal1 is both 
positively and negatively regulated by RORα and REV-ERBα.
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among species, suggesting a possibly monophyletic origin of such mechanism 
(Dunlap, Loros, & DeCoursey, 2004).

3 Synchronization to the Environment

The circadian system in nature is normally exposed to a rhythmic 24-h environ-
ment, so that appropriate signals (called Zeitgebers, from German Zeit, ‘time’; 
geben, ‘to give’), such as light, temperature, or food, synchronize its oscillation 
(Golombek & Rosenstein, 2010). This effect in Chronobiology is called entrain-
ment. Therefore, under entrained conditions, circadian rhythms adjust their 
endogenous period (called τ) to that of the Zeitgeber (called T). It is worth to 
mention that the concept of entrainment – the phenomenon in which two or 
more independent rhythmic processes synchronize with each other – has been 
described in a wide variety of systems and over a wide range of timescales: 
some examples include fireflies illuminating in synchrony, human individu-
als adjusting their speech rhythms to match each other in conversation, foot  
tapping to the beat of a song, and attention to rhythmic patterns in the mil-
liseconds scale (Jones, 1976; Clayton, Sager, & Will, 2005). Circadian rhythms of  
living organisms are entrained to rhythmic environmental cues, such as the 
24-h light/dark alternation or daily temperature cycles. Locomotor activity 
rhythms are one of the most studied circadian outputs, and are frequently  
represented as actograms (Figure 1.2), where horizontal lines represent con-
secutive days and black bars describe the locomotor activity episode. Each 
horizontal line in Figure 1.2 shows one experimental day along the vertical axis, 
and the hours of the day are represented in the x axis. Further information 
about actograms is provided in Section 6.3.

In mammals, the most powerful synchronizer is the daily light/dark cycle. 
Under normal 24-h light/dark conditions, circadian rhythms are entrained 
with a period equal to 24-h (Figure 1.2A).

Light stimulates a group of photosensitive retinal ganglion cells (pRGC) that 
express the photopigment melanopsin (Panda et al., 2002) and project to the 
scn through the retinohypothalamic tract (Morin, 2013). The effect of light on 
scn neurons leads to an increase in the intracellular concentrations of Ca2+, 
which initiates a signal transduction cascade that ultimately results in a phase 
shift of the circadian clock (Golombek, Agostino, Plano, & Ferreyra, 2004; 
Golombek et al., 2003; Golombek & Rosenstein, 2010; Morin & Allen, 2006). 
The circadian clock differs in its temporal responsiveness to external stimuli. 
For example, in nocturnal rodents, exposure to light synchronizes circadian 
rhythms by inducing phase delays during the early night and phase advances 
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Figure 1.2 Circadian entrainment to the environment. (A) In the left panel, the actogram 
represents a locomotor activity rhythm from a nocturnal rodent initially entrained 
to a 24-h light/dark cycle. Upon transfer to constant dark (grey shadow), circadian 
rhythms continue with their endogenous period, in this case longer than 24-h. The 
right panel represents the effect of light stimulation in constant darkness. A light 
pulse (white star) applied during the late night produces a phase advance, while a 
light pulse applied in the early night leads to a phase delay of the circadian system. 
(B) Phase response curves (prc) of circadian rhythms. Actograms represent the 
response of locomotor activity rhythms to a light pulse during (i) the subjective day, 
(ii) and (iii) the early subjective night, and (iv) and (v) the late subjective night, 
producing a typical photic prc (solid line). By convention phase advances are plot-
ted as positive values and phase delays as negative values. Photic prcs are typically 
biphasic, with phase delays at the beginning of the subjective night and phase 
advances at the end of that period, while non-photic prcs (dashed line) exhibit clear 
phase advances during the subjective day and little (if any) responses during the 
subjective night.
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during the late night (Figure 1.2A), led by divergent signal transduction path-
ways that ultimately drive the activation of circadian clock genes (Lowrey & 
Takahashi, 2000). For example, during the late night, when light induces phase 
advances of behavioral rhythms, photic stimulation specifically activates 
the guanylyl cyclase (GC)/cGMP/cGMP-dependent kinase (pkg) pathway 
( Agostino, Plano, & Golombek, 2007; Golombek et al., 2004).

The effect of light in synchronizing the circadian clock depends on the time 
of day, thus defining a phase-response curve (prc) that indicates the times 
at which light can induce phase delays, phase advances, or no change at all 
( Figure 1.2B, Dunlap et al., 2004; Golombek & Rosenstein, 2010; Johnson,  Elliott, 
& Foster, 2003). The prc is one of the main tools to study sensitivity of the 
circadian system to either light (photic entrainment) or many other stimuli 
 potentially capable of resetting the clock (called non-photic entrainment). 
The prc, its shape and amplitude, is an intrinsic property of the circadian 
oscillator. Indeed, the prc is characteristic for each species. In humans, it is 
also the basis for the design of treatments in abnormal entrainment situations, 
such as jet-lag, shiftwork or circadian-related sleep disruption (Gooley, 2008; 
Lewy, Emens, Jackman, & Yuhas, 2006).

Other entrainment cues like food intake, environmental changes in temper-
ature, drugs or even social interactions can reset circadian rhythms, eliciting 
phase shifts mainly during the subjective day (the resting period in rodents; 
Figure 1.2B).

When photic or non-photic Zeitgebers directly affect a rhythmic output 
without affecting the circadian oscillator, for instance directly suppressing or 
stimulating locomotor activity, this mechanism is called masking (Mrosovsky, 
1999). Different from entrainment, masking influences a circadian output (such 
as behavior) without the participation of the endogenous circadian clock.

3.1 Zeitgeber Time and Circadian Time
Since a strong Zeitgeber defines the rhythm of the circadian oscillator, un-
der entrained conditions time is expressed as Zeitgeber time (zt). In the case 
of photic entrainment, within a light/dark schedule of 12 hours of light and 
12 hours of darkness (ld 12:12), ZT0 is defined as the time of ‘lights ON’ (i.e., 
the beginning of the light phase). Similarly, ZT12 corresponds to the time of 
‘lights OFF’, the end of the light phase. Analogous terminology is applied for 
non-photic Zeitgebers, such as food or temperature.

When organisms are kept under constant conditions by avoiding con-
tact with external time cues, they display so-called freerunning or circadian 
rhythms, no longer equal to 24-h. Therefore, time cannot be expressed in zt 
but it is expressed in circadian time (ct) units. One circadian cycle is divided 
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into 24 cts, with one unit being defined as the division of the internal period 
length (τ) by 24 hours. The period under freerunning conditions differs among 
species. For example, the freerunning period of the human circadian rhythm in 
body temperature is close to 25-h.

3.2 In the Limit of Synchronization: T-cycles, Forced Desynchronization 
and Relative Coordination

Under natural conditions of entrainment to a Zeitgeber of T=24-h, varia-
tions of the subject’s endogenous period (τ) may lead to different phases of 
entrainment, that are associated with chronotypes. In this sense, short endog-
enous periods τ often lead to early phases (‘morning larks’) and long periods 
τ correspond to late phases (‘night owls’). Mutations that affect the intrinsic 
 period τ result in large shifts of the entrainment phase. For example, patients 
with  familial advanced sleep phase syndrome have a short endogenous pe-
riod of τ = 23.3-h leading to a phase advance of more than 3-h (Jones et al., 
1999). Thus, the phase of entrainment is a function of the period mismatch 
τ – T ( Bordyugov et al., 2015).

Most organisms can only entrain to Zeitgebers cycling with a period close 
to 24-h. If the entraining period is too short or too long – thus, exceeding 
the range of entrainment – the circadian system cannot follow the Zeitge-
ber anymore. In the laboratory, circadian rhythms can be entrained to vari-
able  Zeitgebers with different T periods (called T-cycles) in order to determine 
the range of entrainment for each species (Aschoff, Daan, & Honma, 1982; 
Jud, Schmutz, Hampp, Oster, & Albrecht, 2005). To determine this range of 
entrainment,  T-cycles of different periods T≠24-h are applied. For example, 
22-h or 26-h  T-cycles may be used to define the limits of stable entrainment. 
These limits differ from species to species and depend on the nature of the 
applied Zeitgeber.  Notably, under T  periods close to the limits of circadian 
 entrainment, nocturnal rodents present two patterns of behavior, called forced 
 desynchronization and relative  coordination (Campuzano, Vilaplana, Cam-
bras, & Diez-Noguera, 1998; Casiraghi, Oda, Chiesa, Friesen, & Golombek, 2012; 
de la Iglesia, Cambras, Schwartz, & Diez-Noguera, 2004; Golombek et al., 2013). 
Forced desynchronization ( Figure 1.3A) occurs when a system of dual, weak-
ly coupled circadian oscillators is subjected to a Zeitgeber that is outside the 
range of entrainment of one of these oscillators. For example, it has been de-
scribed that when rats were maintained under light/dark cycles with period 
of 22- and 23-h, two  circadian rhythms were simultaneously present in their 
motor activity,  temperature, and feeding activity: one rhythm followed the ex-
ternal light/dark cycle, whereas the other rhythm was under freerunning with a 
period of around 25-h ( Madrid, Lax, Vilaplana, Cambras, & Díez-Noguera, 1992; 
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Vilaplana,  Cambras, &  Diez-Noguera, 1997). This behavior has been found as 
the manifestation of two groups of oscillators within the scn: a ventrolateral 
scn capable of entraining to the external cycle and a dorsomedial scn inca-
pable of such kind of entrainment (de la Iglesia, Cambras, Schwartz, & Diez-
Noguera, 2004). Therefore, under certain external conditions, the circadian 
system can be dissociated in such a way that an entrained and a non-entrained 
rhythm (black bars and white bars, respectively, in Figure 1.3A) could appear 
 simultaneously. On the other hand, relative coordination (Figure 1.3B)  reflects 
the resetting effects of  environmental Zeitgebers that are strong enough to 
influence the   biological clock but are not strong enough to synchronize it 
(Golombek et al., 2013).

3.3 Circadian Desynchronization
When the timing of the light/dark cycle is altered – for example, as a result 
of transmeridian travel or work schedules – it leads to a misalignment of the 
circadian system with the environment.

A well-known consequence of circadian alteration is jet-lag disorder, which 
results from rapidly crossing times zones – with the severity of symptoms typi-
cally depending on the number of times zones crossed, the travel frequency, 
and the direction of travel (east or west). Symptoms vary from insomnia and 
excessive sleepiness to more severe complications, including increased cancer 
risk, metabolic disorder, cognitive deficits, reduced fertility, and deregulated 
immune responses (Castanon-Cervantes et al., 2010; Golombek et al., 2013; 
Karatsoreos, Bhagat, Bloss, Morrison, & McEwen, 2011; Mahoney, 2010; Scheer, 
 Hilton, Mantzoros, & Shea, 2009). In animal models, interference with the 
cGMP-related photic entrainment pathway has been proven to be a useful tool 
for accelerating synchronization to advances of the light/dark cycle, which 
may reduce jet-lag symptoms due to eastbound flights (Agostino et al., 2007; 
Plano, Agostino, de la Iglesia, & Golombek, 2012).

Another circadian alteration is produced by shift work disorder, which 
 affects people who frequently rotate shifts or work at night. Under these con-
ditions, the alternation between a normal sleep/wake cycle and being awake 
at night and sleeping during the day not only alters the light/dark schedule 
in relation to the endogenous circadian clock, but also modifies feeding pat-
terns, social habits, etc. (Reid & Abbott, 2015; Zee & Goldstein, 2010). Sleep 
loss, in addition to circadian misalignment, contributes to decreased  alertness 
 during night work. Current treatment of shift work disorder includes  strategies 
to achieve and maintain some degree of circadian alignment (e.g., photic 
phase shift  protocols, avoidance of light during the day, melatonin admin-
istration, etc.), improve sleep (using hypnotics, melatonin, and  behavioral 
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 approaches), and  facilitate alertness (using light, wake-promoting agents, and 
sleep scheduling).

Rodent models based on disruption of circadian rhythms provide useful 
information to study desynchronization due to modifications in the environ-
ment, such as abrupt changes in the light/dark cycle or nocturnal exposure 
to light. A commonly used model of circadian disruption is constant light 
(ll) exposure (Figure 1.3C), which induces period lengthening followed by 
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Figure 1.3 In the limit of circadian entrainment. Actograms representing different light/dark 
conditions in a nocturnal rodent. (A) When a T-cycle is outside the synchronization 
range (in this example, T<<τ) it leads to forced desynchronization. A dissociation of 
the behavioral rhythm into two components can be observed, one that is synchro-
nized to the light/dark schedule (black bars), and a second one (white bars) that 
runs in relative coordination. (B) Relative coordination (modulation of the circadian 
period). (C) Circadian desynchronization under constant light (ll) conditions.
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 circadian arrhythmicity in nocturnal rodents (Meng et al., 2010; Moriya et al., 
2000). Also, ll conditions attenuate circadian rhythms of clock genes such 
as Per2 (Bussi, Levin, Golombek, & Agostino, 2014; Sudo et al., 2003). Altered 
circadian rhythms in rodents also lead to depressive-like symptoms, anxiety 
and anhedonia, expressed by reduced sucrose intake, altered patterns of food 
intake and high plasma levels of corticosterone (Fonken et al., 2009; Fonken 
et al., 2010; Tapia-Osorio, Salgado-Delgado, Angeles-Castellanos, & Escobar, 
2013), indicating that entrainment of circadian rhythms is necessary for effi-
cient physiological and behavioral integrity.

4 Circadian Influence on Cognition

As mentioned, the circadian system regulates several physiological and behav-
ioral functions, and disruption of the circadian clock may have severe conse-
quences for physical and mental health. In this section, we will overview an 
important example of circadian modulation: the influence of the circadian 
system on cognitive functions.

There is evidence that cognitive performance and learning is influenced by 
circadian oscillators (Eckel-Mahan & Storm, 2009; Gerstner & Yin, 2010). Also, 
regularly-timed cognitive processes impact circadian rhythms (Gritton et al., 
2012), indicating a bidirectional interaction between cognitive performance 
and circadian processes. Furthermore, at least for some tasks in nocturnal ro-
dents, night-phase performance can never be equaled by light-phase perfor-
mance regardless of the strength of entrainment to the schedule, which may 
have deep implications for shiftwork therapies (Gritton et al., 2012). In addi-
tion, desynchrony between internal and environmental time has been associ-
ated with impaired cognitive function in animals (Devan et al., 2001;  Gibson, 
Wang, Tjho, Khattar, & Kriegsfeld, 2010; Loh et al., 2010) and humans (Cho, 
2001; Cho, Ennaceur, Cole, & Suh, 2000; Folkard, 1996; Santhi, Horowitz, Duffy, 
& Czeisler, 2007). Although it is well established that cognitive abilities vary as 
a function of daytime, there is still a widespread view that the circadian clock 
has a singular role in cognition related to sleep timing, and that the main factor 
for cognitive maintenance is the quality and duration of sleep. However, there 
is also evidence that indicates a circadian control of cognition beyond sleep 
timing, as revealed by forced desynchronization protocols (Kyriacou & Hast-
ings, 2010; Wright, Hull, & Czeisler, 2002).

A fundamental component of cognition is the perception of the passage of 
time. In particular, temporal processing within the hundreds of milliseconds 
and the seconds-to-minutes range – known as interval timing – is crucial for 
many complex behaviors, such as speech comprehension, working memory, 
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and decision making (Buhusi & Meck, 2005; Agostino & Cheng, 2016). Sever-
al evidences suggest that interval timing is also influenced by the circadian 
 system. Indeed, time-of-day effects have been observed for the timing of both 
auditory and visual signals in the seconds-to-minutes range (Aschoff, 1985; 
Chandrashekaran et al., 1991; Meck, 1991; Pati & Gupta, 1994). For example, 
 several studies have reported that time judgments in humans covary with nor-
mal circadian rhythms (Kuriyama et al., 2005; Lustig & Meck, 2001). Consistent 
with this finding, a circadian rhythm in interval timing was documented in 
control participants, but it was found to be disrupted in shift-workers (Pati & 
Gupta, 1994). Moreover, rats exhibit circadian variations in time  perception 
similar to those that have been demonstrated in humans (Shurtleff, Raslear, & 
Simmons, 1990). Furthermore, sleep deprivation influences diurnal  variation 
of interval timing in humans (Soshi et al., 2010). In Drosophila melanogas-
ter, timing of short intervals is disrupted in circadian mutants for each of the 
three allelic per mutations, pers, perl, and pero (Kyriacou & Hall, 1980). In mice, 
significant differences in the estimation of 24-sec intervals at different times 
of day were reported (Agostino, do Nascimento, Bussi, Eguia, & Golombek, 
2011). These differences were maintained under constant dark conditions, but 
impaired in mice under constant light, which abolish circadian rhythmicity. 
Moreover, short time estimation in animals subjected to a 6-h advance of the 
light/dark cycle was transiently affected, indicating that temporal desynchro-
nization of the circadian system is able to negatively affect interval timing. It 
has also been described that dopamine levels in mice present 24-h rhythms in 
the dorsal striatum, with lower levels during the day and peaking during the 
night (Bussi et al., 2014). Moreover, higher dorsal striatal dopamine levels dur-
ing the night  coincide with better performance on interval timing (i.e., peak 
location closer to the target time, higher peak amplitude and reduced peak 
width) in the  nocturnal phase of the light/dark cycle in mice (Agostino et al., 
2011; Bussi et al., 2014). Both interval timing and dopamine oscillation – as well 
as dopamine synthesis and turnover – in the dorsal striatum are affected by 
inducing  circadian disruption under constant light conditions. In addition, 
circadian regulatory elements have been found in the promoter region of com-
ponents involved in dopamine metabolism, like dopamine transporter (dat), 
 dopamine receptor 1A (DRD1A), tyrosine hydroxylase (th), and monoamine 
oxidase (mao),  demonstrating that the expression of these components 
is under circadian regulation (Hampp et al., 2008). It was recently reported 
impaired learning in a timing task in pinealectomized rats (Bussi, Levin, 
Golombek, & Agostino, 2015). Furthermore, melatonin depletion increased 
striatal dopamine availability  – which was reversed by external melatonin 
 administration –  indicating that this hormone may modulate interval timing 
on a circadian base.

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



Agostino, Bussi and Caldart12

<UN>

5 Different Approaches to Measuring Circadian Rhythms

Several outputs are used to assess the overall status of the circadian system. 
These variables (called circadian marker rhythms) can be easily measur-
able over long periods of time, preferably using non-invasive methods. The 
most widely used circadian marker rhythms in several organisms are those 
of activity,  temperature, hormones, and clock gene expression (LeSauter & 
Silver, 1998). In humans, the main variables used are actigraphy, core body 
 temperature (cbt), and plasma or salivary melatonin (Bonmati-Carrion et al., 
2014;  Klerman,  Gershengorn, Duffy, & Kronauer, 2002). In nocturnal rodents, 
 wheel-running activity is the most commonly used and reliable method 
for assessing the output of the circadian clock. Other measures that can be 
used include general activity, food-bin approaches, drinking, sleep, and body 
temperature.

Bioluminiscence has become a powerful tool for studying circadian 
rhythms. Exogenous luciferase genes, under the control of promoters confer-
ring circadian regulation, have been introduced into a wide variety of organ-
isms, including cyanobacteria (Synechococcus), plants (Arabidopsis), insects 
(Drosophila), nematodes (C. elegans) and rodents (Welsh & Kay, 2005; Goya, 
Romanowski, Caldart, Bénard, & Golombek, 2016). These transgenic organisms 
exhibit robust circadian rhythms of luminescence, useful as a longitudinal as-
say of rhythmicity for a wide range of recent genetic and biochemical studies 
of circadian clock mechanisms.

6 Circadian Data Analysis

6.1 Period, Amplitude and Phase
Like other periodic patterns, circadian rhythms can be described using mainly 
three parameters: a) period (τ), defined as the time in which a cycle is complet-
ed, b) amplitude, defined as the difference between the peak (or trough) and 
the mean value of the variable under study, and c) phase or phase angle (φ), 
the timing of a reference point in the cycle relative to a fixed event (Figure 1.4). 
There are several conventions to define the phase of a rhythm; however, the 
most commonly used is when the amplitude reaches its maximum, which 
is called acrophase in the Cosinor analysis (see below; Dunlap et al., 2004). 
 Consequently, every time that we mention the phase of a rhythmic signal, it 
will be referring to its acrophase. Indeed, the algorithms that will be described 
in the following sections will also compute the acrophase (time of peak) of 
the signal.
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These parameters (period, amplitude, and phase) can describe any periodic 
pattern, but are normally used to characterize a sinusoidal wave. In many cas-
es, however, this is not the real situation (i.e., locomotor activity may behave as 
a square-like rhythm). For this reason, most of the algorithms that are usually 
used to compute period and phase have been tested for different waveforms 
and are still valid for data analysis. Even though in this chapter we will only 
analyze the mentioned parameters, it is worth noting that according to the 
type of experimental data there are many other parameters that can be useful 
to analyze (e.g., sinusoidal dampening, fragmentation, coupling of the activity 
and Zeitgeiber, phase angle, etc.).

6.2 Sampling and Signal Conditioning
Before a complete overview of the methods used for analyzing circadian 
rhythms, it is important to refresh some basic concepts of signal analysis, such 
as sampling and signal conditioning (filtering and detrending). This informa-
tion will allow us to know beforehand some of the limitations of our analytic 
methods.
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Figure 1.4 Characteristics of circadian rhythms. Period (τ) is defined as 
the time to complete a cycle. It is commonly measured from 
peak to peak, but it could equally be measured from trough 
to trough or from any specified phase marker. The amplitude 
(A) of the rhythm is defined as one-half the peak-to-trough 
distance, from mesor (M) to peak or M to trough. Phase or 
phase angle (ϕ) is the timing of a reference point in the cycle 
(e.g., the peak) relative to a fixed event. The relationship of two 
mutually synchronized or entrained rhythms is expressed in 
terms of the phase angle difference (Δϕ).
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A fundamental aspect of data analysis in temporal series is sampling. The 
first step is to decide between uniform sampling and non-uniform sampling 
(i.e., when data cannot be collected uniformly spaced). When possible, a uni-
form sample is clearly the best option, because it allows a wider and  stronger 
set of statistical tools. Even if some data points were lost, the missing data 
could still be interpolated in a reliable and easier way. Another key feature 
of the  experimental design is to define the sampling rate – the time inter-
val  between two consecutive samples, or bin – according to the needs and 
objectives of the undergoing experiment. In this age of fast computers and 
large hard drives, the trend is to choose a very high frequency of sampling 
and  disregard the storage size; however, sample size does matter and it is a 
key factor for further data analysis. The sampling rate will define the shortest 
 cycle that can be measured. According to the Nyquist theorem, the sample 
rate must be at least twice the higher frequency (i.e., 1/ τ) that it is aimed 
to study (Levine, Funes, Dowse, & Hall, 2002). For example, if we aim only 
to find the circadian frequency (24-h), we could just sample every 12 hours. 
However, in this case we cannot  compute a phase or an accurate period. On 
the other hand, if the sampling rate were once per hour, then it would be 
possible to evaluate periodicities down to two hours (but not shorter), since 
a minimum of two points is required to describe a cycle. For this reason, the 
precision of the experimental approach is limited by the sampling proce-
dure. However, a very high sampling rate would implicate low sample size – 
 defining sample size as the length of the integrated time of the measure. In 
this case, when a very low sample size is used, the time for data processing 
and  visualization greatly increases. According to the experimental output 
(e.g., locomotor activity, gene or protein oscillation, etc.), a compromise is 
reached between accuracy and speed. The usual sample size for circadian 
analysis of locomotor activity data varies between 5 to 30 minutes. This sam-
ple size will allow an accurate determination of circadian period and phase, 
as well as the study of the transient behavior of these parameters ( including 
period and phase shift).

Sometimes there are some elements in the signal that may interfere with 
the calculation of circadian parameters. In this case, the raw data often need 
to be filtered for further study; this processing of the raw signal before the 
analysis is known as signal conditioning. Two of these interfering elements 
will be  addressed in this section: the presence of a shifting temporal baseline 
(i.e.,  linear trend) and the presence of a high frequency noise.

In the first case (the presence of a shifting temporal baseline), the two 
types of linear effects that can alter the subsequent data analyses involve: 

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



15Circadian Timing

<UN>

(1) a  monotonically decrease or increase in the signal at a constant rate, thus 
 producing a linear trend in the data, and (2) the rhythmic component of a sig-
nal can be obscured by high baseline activity. The first type of linear effect may 
have linear as well as non-linear components. This trend can be caused, for 
instance, by the natural aging of invertebrate models and it is common in their 
locomotor activity recordings. The second type of linear effect, a high baseline, 
could occur in many cases (e.g., data from imaging experiments). Even though 
the rhythm is quite strong in the circadian range, it cannot be computed before 
the conditioning. Removing this kind of trend is quite common and is highly 
recommended. It can be simply done by removing a regression line, to obtain 
a signal with slope and mean of 0. When the trend is non-linear, this detrend 
is a bit more complex; the most common approach is to use a moving-average 
window of fixed length to obtain the non-linear trend over time. Once we have 
obtained the trend, we can remove it with an amplitude correction by dividing 
the original signal by the trend, or by subtracting the signal. Thus, we keep the 
natural baseline of the signal, but we remove the non-linear trend. Detailed 
examples for detrending and normalizing a signal for circadian analysis can be 
found in Levine et al., 2002.

In the second case (the presence of high frequency noise), the approach 
is to use digital filters. These filters diminish the spectral contribution of a 
certain wavelength to the signal while keeping the others intact. The filters 
that reduce the high frequency components are called low-pass or smooth. We 
will mention a simple filter, moving-average smoothing, but there are other 
types of filters more complex, with different advantages and disadvantages. 
A  filter can be defined as a function that transforms a time series into another. 
The  moving-average filter is one of the most simple and used in the circadian 
field. It is used to analyze a set of data by creating a series of averages of dif-
ferent subsets of the full data set. Specifically, this filter averages a fixed num-
ber of points – it is better to have an odd number of points – in order to find 
the mean value of the initial subset of data. Then the subset is modified by 
moving one point forward in time, and the process is repeated until we reach 
the end of the data series. The resulting plot line connecting all the averages 
is the moving average: a set of numbers, each of which is the average of the 
corresponding subset of a larger set of data. In this case we give each point 
the same weight, but sometimes it is recommended weighting differently each 
point mainly with a Gaussian distribution (Levine et al., 2002) to give the cen-
tral point of the  window a higher weight. An example of moving average can 
be found in the online Appendix section (smoothma.m file; see book’s GitHub 
repository).
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6.3 Actograms
As previously shown in Figures 1.2 and 1.3, actograms are a useful tool to repre-
sent circadian locomotor activity rhythms in several species. The actogram is 
usually performed as a ‘double plot’ graph, where two cycles are represented in 
the same horizontal line. Specifically, double-plotted actograms show the sec-
ond cycle on the right side of each line, as well as at the start of the following 
horizontal line, and so on. If the actogram is usually set at a fixed period of 24-h 
(for a solar day) in the x-axis, then the double plot representation will have 
48-h duration (Figure 1.5, left panel). The cycle is divided into a time fraction 
with main activity episodes (called alpha) and other with major rest episodes 
(called rho). Sometimes, scattered activity can be observed in the rho time be-
cause the animal interrupts its sleep for a short time (Jud et al., 2005). Double-
plotting is especially useful to visualize non-24-h rhythms or very long series.

One of the reasons that the actogram became a key representation in Chro-
nobiology is that it allows a fast and reliable visual analysis. With a simple ob-
servation we can realize the changes of period and phase. The actogram was 
first introduced by Colin Pittendrigh at the beginning of the 1960s (Pittendrigh, 
1965), well before any computational method for circadian data analysis was 
established. By that time, data were plot and measured by hand. Currently, 
there are many computational tools (e.g., a circadian plugin for Imagej and the 
software El Temps) that still maintain the concept of visual analysis (‘paper and 
ruler’ analysis, in which the actogram is printed and analyzed with common 
measuring instruments).

The main downfall of this approach is the variability of the observation be-
tween users and the lack of rigorous quantitative analysis. Nevertheless, this 
kind of analysis is still heavily used. A quick example of this visual inspection 
in the actogram can be seen in Figure 1.6, where locomotor records with differ-
ent periods, as well as phase shifts, can be easily identified.

An example of a double-plotted actogram containing real data can be 
found in the online Appendix, by running the function Actogram (see the files 
SCRIPT.m and ScriptFilter.m for further details; see book’s GitHub repository).

6.4 Waveform
Periodic data of known period could be divided into sections, with the length 
of these sections matching the underlying period. Overlaying these sections 
(cycles) will produce a clear waveform, with peak and trough (Figure 1.5, right 
panel). In other words, a waveform can be thought as an average of all the 
lines of the actogram. The length of the waveform is given by the length of 
the cycle, which can be empirically fixed (e.g., the length of a light/dark cycle) 
or previously calculated by any method. Even though it can be used in many 

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



17Circadian Timing

<UN>

cases, this technique is more common with evenly sampled series (uniform 
sampling) containing a good number of complete cycles (10 or higher). The ob-
servation and analysis of the average wave yields important characteristics of 
the rhythm, such as the duration of the activity time (alpha) and the rest time 
(rho). To define these different states of activity we need to find the beginning 
of the main activity episode, called activity onset, and the end or activity offset, 
which in many cases is a quite easy task. However, when these points are more 
difficult to find, as for instance due to fragmentation of activity episodes, is 
better to set an objective criterion. One approach is to find the median or the 
average of activity within the waveform cycle. Thus, when the activity goes over 
this threshold for a certain amount of time, we can define a statistical criterion 
for the activity onset. Similarly, when the activity falls under this threshold for 
the same amount of time, we can define the activity offset. The time difference 
between activity offset and onset is used to calculate alpha (see Figure 1.5).
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Figure 1.5 Double-plotted actograms and their respective waveforms. To better visualize 
behavioral rhythms, actograms (left panel) are often double-plotted by aligning two 
consecutive days horizontally (e.g., day 1 left and day 2 right). In this example, two 
different light/dark (ld) conditions with a period of 24-h are shown: a ld 12-12 cycle 
(i.e., 12-h of light and 12-h of darkness), and a ld 16-8 cycle (i.e., 16-h of light and 
8-h of darkness). Activity onset, activity offset, alpha and rho are indicated in the 
actogram. The resulting waveforms (right panel) for these two ld conditions display 
the same period (24-h). In each waveform, the length of the activity portion (alpha, 
white background) is measured between the activity onset and the activity offset, 
being tα=12-h for the upper waveform and tα=8-h for the bottom waveform. The 
percent of this length, according to the total length of the cycle (alpha percentage), 
is 50% and 33%, respectively. The length of the rest time rho (tρ) and its percentage 
(tρ%) can be obtain as the complement of tα and tα% respectively.
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Once the limits of alpha and rho phases are defined, their length (tα and 
tρ) is easily measured by taking into account that T = tα + tρ. The most usual 
way to represent these times is relative to the length of T (for alpha tα% = 
100 tα / T). For example, for T = 24-h and tα = 12-h, then tα% = 50, meaning 
that half the total period corresponds to the activity phase. Along with the 
length of  alpha and rho phases, it can be also calculated the area under the 
curve for both time lapses (Aα and Aρ) and to express them as percentages 
of the  total area (Aα% and Aρ%). Finally, with both the length and amount 
of  activity in both  states,  it  can be computed the degree of agglomeration 
(Aα% / tα%). When this  degree is near 1, the distribution of activity is uni-
form (i.e., we have a weak variation in the rhythm), while when this degree is 
higher than 1, most of the activity is concentrated in the alpha phase (Madrid 
& de Lama, 2006).

6.5 Periodogram
A key step in the analysis of circadian data is to accurately calculate the under-
lying period. There are several methods for determining period, which range 
from graphic approaches, such as the actogram – mentioned in Section 6.3 – 
to more mathematically complex approaches, such as Fourier-transform and 
non-Fourier-transform based algorithms (Zielinski, Moore, Troup, Halliday, & 
Millar, 2014). The latter methods allow a level of significance for period calcula-
tion, as well as an unbiased estimation.

A periodogram is a function relating periodic components of a time se-
ries to their spectral power. Many algorithms for period estimation had been 
described in the literature, all of them with a varying degree of complexity 
and different assumptions. Nevertheless the calculation method, all periodo-
grams possess the same graphic representation, which makes them quite easy 
to understand (Figure 1.6). Several authors (Refinetti, 1993; Zielinski et al., 
2014) compare the different methods for periodogram analysis (e.g., Fourier,   
Enright, Lomb-Scargle, etc.) and describe the best option for different cases.  
Each method has its own strength and weakness. In this section, we will  
mention two widely used methods: Lomb-Scargle (ls, very useful in short  
series and non-uniform sampling) and the Chi-square method, also known as 
Sokolove-Bushell (sb).

The most popular and conceptually simpler method is the Chi-square peri-
odogram – its name corresponds to the statistical distribution that it uses. This 
method consists in splitting the data in sections of a fixed length. When this 
fixed length matches the period of the series, the overlay of all sections will 
give a clear waveform (with a strong variation) as the repeating patterns of the 
series coincide. However, if the length of sections does not coincide, then the 
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Figure 1.6 Double-plotted actograms and their respective periodograms. (A) T = τ, with a 
 period of 1440 minutes (24-h). (B) When τ < T, the activity seems to drift left. In this 
example, the endogenous period is τ = 1420 minutes. (C) When T < τ, the activity 
drifts to the right. In this example, the endogenous period is τ = 1465 min. In all cases, 
the peridogram represents the constant dark condition. Upper panel: Sokolov-Bushel 
(sb) periodogram. Lower panel: Lomb-Scargle (ls) periodogram. It is also possible 
to have an idea of the resulting period by the actogram’s visual inspection. By using 
the proper tool, the endogenous period can be calculated as the slope of the change 
in τ (‘paper and ruler’ method).
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peaks and troughs will not match, and overlaying the sections together will 
result in a small-amplitude signal with a non-significant variation. To analyze 
data with unknown period, the algorithm evaluates a wide range of length for 
different periods. When the maximum correlation is found – and it is statisti-
cally significant – we have found the main period of the series that gave the 
highest amplitude of the waveform. One of the best features of this method 
is its independence from the waveform of the rhythmic signal, because it only 
requires a repeating pattern, while other methods, such as Fourier or ls, as-
sume a sinusoidal waveform. The main downfall of the sb method is that the 
step size between periods that can be tested is limited by the sample size and 
the duration of the series. This method is widely used in long time series (more 
than 10 cycles) with a high sampling rate.

Another general approach is based in the curve-fitting criterion. This meth-
od assumes an a-priori periodic signal (mainly sinusoidal) and optimizes the 
signal parameters to best fit the data. In this case, we plot the correlation coef-
ficient after the fit with different periods. This approach allows using short-
er series and even non-uniform sampling. The Fourier method is the most 
 basic approach of this set of algorithms. As we use a sinusoidal signal to fit, 
the method is especially sensitive to this waveform; however, it is not as good 
to fit other types of rhythmic signals. The Lomb-Scargle periodogram con-
sists of a spectral analysis (a modification of the Fourier periodogram). This 
method creates a spectrum representing the significance of each frequency 
with a  normalized power, and is usually the best choice in short series and 
 non-uniform sampling. This method combines both cosine and sine fit to find 
periodicity regardless of the data phase. Another interesting feature is that it 
reduces the subsequent sub-harmonics of the main period (if the period is 
T, the peaks in 2T, 3T, etc.) and, therefore, the periodogram analysis and repre-
sentation are ‘clean’.

There are many other methods to calculate the underlying period, such 
as mesa (Maximum Entropy Spectral Analysis) or fft-nlls (Fast Fourier 
 Transform Non-linear Least Square algorithm). mesa is very useful because it 
can resolve multiple periods that are relatively close (Dowse, 2013). It is beyond 
the objective of the present chapter to describe all of them, but it is impor-
tant to recognize which method is the best choice according to the specific 
experimental data. A comparison of the most used algorithms for determining 
period can be found in Zielinski et al. (2014).

An example containing the periodogram calculation of real data can 
be found in the online Appendix, by running the functions chisquare (Chi-
square or Sokolov-Bushel periodogram) and lsssigx (a simplify application 
of the fastlomb.m that gives the complete spectrum of the Lomb-Scargle 
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 periodogram). See the files SCRIPT.m and ScriptFilter.m for further details (see 
book’s GitHub repository).

6.6 Cosinor
As it was already shown in Figure 1.4, a simple rhythm can be described as a 
sinusoidal wave. By taking into account all the rhythm parameters, the signal 
can be mathematically expressed as: 

 ( )cos ;= + −y M A tw j  (1)

where M is the mean of the adjusted data (Midline Estimating Statistic Of 
Rhythm, mesor), φ is the acrophase, A is the amplitude (difference between 
φ and M) and t corresponds to time. Finally, ω = 2π/T is the angular frequen-
cy, being T the rhythm period. The mathematical procedure that fits the best 
curve – best fit according to the less-square method – is known as Cosinor. The 
expression of y leads to a nonlinear optimization to find the values of M, A 
and φ. The equation (1), by using the Euler’s equation through the formula 
cos(α – β) = cos(α)cos(β) + sin(α)sin(β), is transformed to:

 ( ) ( )cos i ;s n= + +y M t b ta w w  (2)

where a [A cos (φ)] and b [A sin (φ)] are known as the Euler coefficients, 
and are used to calculate the values of A and φ in the original equation (1) as 
follows:

 2 2 ;= +A a b  ( )1tan /−= b aj  (3)

If the signal was uniform sampled, the calculation is even simpler:

 ( ) ( )1 1 1

1 2 2
; cos ; sin

= = =
= = =∑ ∑ ∑n n n

i i i ii i i
M y a  y  t b y  t

n n n
w w  (4)

The Cosinor method is mainly used to analyze a rhythmic time series with 
a known period (T), which can be obtained from the periodogram analysis 
( Cornelissen, 2014; Diez-Noguera, 2013). The Cosinor analysis will allow to 
 obtain the phase (φ) and the amplitude (A) of the rhythm. A polar graph is 
usually performed to plot the results (see Figure 1.7 and online Appendix). In 
this graph, a circle represents the period T, with a vector that origins in the 
center of the circle. This vector has a size that depends on the amplitude (A) 
and its direction depends on the time of the acrophase (φ). Additionally, it is 
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usually represented in the same graph the confidence interval (ci) for each 
parameter, forming an ellipse around the further point of the vector. When 
the  ellipse includes the vector’s originating point, then the amplitude (and 
thus the rhythm) is statistically non-significant (i.e., A is non-different from 
zero). This is caused when the fitted curve represents less than 60% of the total 
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Figure 1.7 Graphical representation of Cosinor and Rayleigh in a polar plot. (A) Cosinor 
 analysis of two data sets. This is illustrated by the elliptical 95% confidence interval 
(ci) for the amplitude-acrophase pair. The 95% ci is located at the endpoint of the 
vector. In the left panel, the phase can be found and is significant as it pass the null 
amplitude hypothesis (Mesor = 0.019; Amplitude = 1.22; Acrophase = −1.46  radians = 
5.57 hours; p < 0.05). In the right panel, the data does not pass this test ( Mesor = 0.12; 
Amplitude = 1.10; Acrophase = −0.92 radians = 3.51 hours; p > 0.05). (B)  Rayleigh  
test of two data sets. In the left panel there is a significant unimodal aggrupation  
(p = 2e-4), while and in the right panel there is a non-significant data set (p = 0.38). 
The significance can be clearly observed as the resultant vector goes beyond the 
significance circle in the center of the left panel graph, while it does not go beyond 
the circle in the right panel.
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variation of the signal (40% residual variation of the less-squared fitting). In 
a similar way, when more than one signal is represented in the same graph, a 
superposition of the ci indicates that the two signals do not have a significant 
difference.

The Cosinor method is widely used to find the amplitude (as criterion for 
significant rhythmicity), but more importantly, the acrophase of the time se-
ries. However, as many other curve-fitting methods, is strongly dependent on 
the signal’s waveform, and responds much better (both in accuracy and sig-
nificance) with smooth sinusoidal data than signals with abrupt changes or 
nonsymmetrical shapes (Cornelissen, 2014).

The online Appendix includes examples of Cosinor analysis of locomotor 
activity series. To analyze this kind of data, first select the time period and then 
run the function cosinor (see the files SCRIPT.m and ScriptFilter.m for further 
details in book’s GitHub repository).

6.7 Circulars Statistics and Rayleigh
Circular statistics refers to the development of statistical techniques for the 
use with data represented on an angular scale (Berens, 2009). Due to their 
circular nature, many circadian data can be analyzed with circular statistics. 
The phase of time series, when we study a rhythmic signal, is an example of 
circular data. In this case, there is no designated zero and, in contrast to a lin-
ear scale, high/low values are arbitrary. This idea of ‘circular time’ is especially 
strong in the case of analyzing repeating patterns with a fixed time range (i.e., 
a cycle of period T and how this pattern changes). For this reason, the rhythmic 
signal is naturally represented as a circular graph (as shown in the Cosinor’s 
section). The rhythm’s phase can be studied as a fraction of the complete cycle 
(in time, angle or radians).

There are many other tests for circular statistics as an alternative for 
 Rayleigh, such as the Omnibus test (Zar, 1999). This test works well with uni-
modal, bimodal and multimodal data, but its use is more selective and is not as 
extensive as others (Berens, 2009).

In case that there is a set of signals (e.g., many individuals in the same 
 experiment), each one will have its own phase. We can study phase similarities 
by representing all the phases in the same circular graph and test them for a 
significant clustering by means of the Rayleigh test (Figure 1.7). This test asks 
how large the vectorial sum of the individual vectors must be to indicate a 
non-uniform distribution, according to the Fisher circular distribution (Fisher, 
1995). The Rayleigh test is especially strong for detecting a unimodal deviation 
from uniformity (Berens, 2009). The test estimates the module (r) of the sum 
vector of the unit vectors corresponding to the phases of each individual. The 
higher the value of r, the greater degree of phase homogeneity. The p-value of 
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the data can be computed by obtaining the critical value from the distribution. 
By setting the significance threshold in p=0.05 the critical value of the vec-
tor can be obtained beforehand. In this way, we can approximate the  critical 
 value  = r ≈ 1.6732268 / (1-n) 0.492018, where n is the number of cases used 
(Diez-Noguera, 2013).

Examples of circular statistics can be found in the online Appendix section 
(Rayleigh.m file; see book’s GitHub repository).

7 Conclusions

The circadian system is ubiquitous, being essential for most living organ-
isms’ physiology. The interaction of several circadian clock genes and proteins 
 generates oscillations in expression of output target genes which temporally 
regulate numerous molecular and cellular processes. A precise regulation of 
circadian rhythms is crucial to keep track with the environment, and perturba-
tions in the circadian system are linked to numerous molecular dysfunctions 
and may result in severe pathologies.

Hence, a comprehensive knowledge regarding the mechanistic of the circa-
dian system is necessary to develop new procedures to investigate pathologies 
associated with a deregulated clock.

In the online appendix section (see book’s GitHub repository), we incorpo-
rate important tools for circadian data analysis, including codes and sample 
data. We include the codes for ls, sb, Cosinor, and Rayleigh analysis as well 
as a code to plot actograms. There are many other software – some of them 
freeware – that possess a wider range of circadian tools. We include links to 
some software too.
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chapter 2

Prospective and Retrospective Timing Processes: 
Theories, Methods, and Findings

Richard A. Block, Simon Grondin and Dan Zakay

1 Introduction

Although one could date the history of the study of psychological time back 
to antiquity, with early hominids’ experiences and Aristotle’s philosophical 
speculations, that is a matter for historians. The experimental study of time 
 estimation has a history that apparently started with research published in 
1868 by Vierordt (Lejeune & Wearden 2009). This was almost two decades be-
fore the widely mentioned beginning of psychological research (Wundt 1886). 
Also, in the early times of what later became psychology, several interesting 
theories on timing and time perception were proposed (e.g., Hooke, 1682, as 
cited in Hintzman 2003; Guyau, 1888; see Michon, Pouthas, & Jackson, 1988). 
Beginning especially with theoretical reviews by the philosopher-turned- 
psychologist James (1890) and continuing through Fraisse in his famous books, 
Psychologie du temps (1957/1963) and Psychologie du rythme (1974), the psychol-
ogy of timing and time perception have blossomed. This is evident in a recent 
edited volume, also with the title Psychology of time (Grondin 2008b). For a 
more in-depth historical review, see Hancock and Block (2012), and for a sum-
mary of recent review articles, see Block and Grondin (2014).

In the present chapter, we mainly focus on time perception and time 
 estimation (see Block & Hancock 2013, for an annotated bibliography). The 
 database PsycINFO distinguishes these terms in a slightly overlapping way: The 
keyword time perception is defined as “perception of duration,  simultaneity, 
or succession in the passage of time.” The keyword time estimation is defined 
as “estimation of duration or passage of time.” The MEDLINE, or PubMed, 
 database simply uses the keyword time perception, which is defined as “the 
ability to estimate periods of time lapsed or duration of time.”

In the experimental literature, which we review later, Hicks, Miller, and 
Kinsbourne (1976) conducted a seminal study. Instead of using James’s (1890)  
descriptions (time in passing and in retrospect), they used the terms  prospective 
and retrospective. In the prospective paradigm, a person is told that time es-
timation is relevant and important. In the retrospective paradigm, a person 

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



33Prospective and Retrospective Timing

<UN>

is misdirected from attending to time, such as with a cover story or a cover 
task. In everyday life, a time estimate becomes relevant and important when 
an environmental situation makes demands to respond in a temporally accu-
rate way. Retrospective duration estimates are used in situations such as those 
involving remembering, eyewitness testimony, and so on.

Researchers have revealed several spans that they think might involve dif-
ferent processes: 100 ms (Block 1979) to about 1.3 s (Grondin 2010; Grondin, 
Laflamme, & Mioni, 2015), 3 s (Pöppel 1978), or 7 s (James 1890), and of course 
even longer. We distinguish between these. We start with brief temporal events, 
and then we review research on longer episodes. We first detail the importance 
of different time scales and review procedures, methods, and measures. Then 
we discuss prospective and retrospective duration judgment processes and 
findings. We conclude by reviewing research on several related issues, such as 
temporal illusions and what is usually called prospective memory.

2 Durations of Temporal Experiences

If a series of identical visual stimuli occurs at brief interstimulus intervals (<100 
ms), according to many old experiments, some interesting phenomena occur 
(see reviews in Block 1979; Patterson 1990). These phenomena were found de-
cades ago and labeled as ‘the psychological moment’; all events  occurring  within 
this period would be processed as co-temporal (but see  Elliott & Giersch 2016).

However, the experience of duration can be approached differently. It is 
now known that for the discrimination of auditory brief intervals, the  Weber 
fraction is not constant. When intervals to-be discriminated are longer than 
circa 1.3 s (Grondin 2012) the fraction increases—i.e., the discrimination is 
more  difficult (for reviews, see Gibbon, Malapani, Dale, & Gallistel, 1997; 
 Grondin 2014), just as if a crucial cognitive capacity would be exceeded with 
long  intervals  (Grondin et al. 2015). Indeed, there is a possibility to avoid this 
 increase of the Weber fraction. It has been shown that for discriminating brief 
auditory  intervals, it is worth adopting an explicit counting strategy when 
 intervals are longer than 1.2 s (Grondin, Meilleur-Wells, & Lachance, 1999).

At longer interstimulus intervals, another phenomenon is experienced, as  
revealed by several experiments. According to Pöppel (1997), there is a low-
frequency mechanism binding successive events―a kind of temporal integra-
tion―into perceptual or action units when these events occur no more than 3 s 
apart. This phenomenon is sometimes referred to as ‘the subjective present’.

Although these phenomena might result from relatively early analyses of 
sensory information, other phenomena have been reported as the “flow of time” 
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at longer interstimulus intervals in any of several sensory modalities  (visual, au-
ditory, or tactual), even with non-identical stimuli (e.g., Gruber & Block 2013). 
In other words, some of these temporal experiences appear to be multimodal 
in origin. These experiments suggest that these temporal  phenomena might be 
a result of sensory persistence, dynamic modal  completion, and  possibly also 
conceptual processes.

A longer time-related phenomenon also occurs―possibly up to James’s 
(1890) and other reviewers’ identification of 5–7 s as yet another critical  period. 
These might be a result of what are usually now called working memory 
processes.

3 Prospective Timing Methods and Processes

Several methodological procedures are used to study the processes involved in 
timing and time perception. In prospective timing, the participants know in ad-
vance that the targeted interval will have to be estimated (such as  reproduced). 
Some authors report four classical methods. In addition to verbal estimation 
and the method of production, which involve chronometric units, research 
has been conducted by using other methods, such as the  reproduction method 
and the comparison method (Bindra & Waksberg 1956; Grondin 2010, 2014; 
Wallace & Rabin 1960; Zakay 1993). Figure 2.1 summarizes the main methods 
for  studying time perception.

3.1 Estimates Relying on Conventional (Learned) Time Units
In the case of verbal estimations, participants provide a numerical estimation 
of the duration, using temporal units (seconds or minutes), of a stimulus or a 
series of stimuli previously presented, such as a flash, sound, series of words 
or pictures, and so on. Verbal estimates tend to be variable, and they are not 
suitable for studies involving young children who have not yet learned what 
seconds or minutes mean. Productions are also based on the use of chrono-
metric units. In the production method, participants are asked to produce, for 
instance, by tapping twice on the spacebar of a keyboard, to mark the begin-
ning and end of an interval lasting several seconds (Mioni, Stablum, Prunetti, 
& Grondin, 2016).

3.2 Estimates Involving Duration Comparisons
Young children must learn how to make time estimates using conventional ver-
bal units. However, researchers use other methods to assess time  perception. 
With young children, the reproduction method is often used: A child is shown 
a stimulus lasting for several seconds, and then is asked to press a button for the 
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same amount of time that the stimulus appeared (Zakay, 1992a). The wording 
of these instructions should be adjusted for the age of the child. Also,  research 
using nonhuman animals must use other methods, such as the peak-procedure 
method, which we do not review here (see, for example, Church 2003; Chapter 
6, this volume).

The method of comparison is a procedure that involves comparing two dura-
tions. Using this method, participants are asked to judge the relative  duration 

Paradigm

Retrospective
timing

Prospective
timing

Verbal
estimate

Interval
reproduction

Interval
reproduction

Interval
production

Interval
comparison

Forced choice

Single intervals Sequence of
intervals

Single stimulas

Bisection Temporal
generalization

Verbal
estimate

Figure 2.1 Summary of the main methods utilized for studying time perception (Adapted from 
Grondin 2010)
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of intervals presented successively, one standard interval and one comparison 
interval. Each to-be compared interval could be marked by continuous sounds 
or continuous flashes (filled intervals) or by brief sensory signals marking the 
 beginning and end of each interval (empty intervals). Participants are asked to 
indicate, such as by pressing an appropriate button, which of two intervals, the 
first or the second, was shorter or the longer one; or if the second interval was 
shorter or longer than the first one. In the comparison method, a reminder meth-
od indicates that the standard interval is always presented first (Macmillan & 
Creelman 1991): the order of the standard and comparison intervals varies from 
trial to trial. Other methods may also be used (e.g., Macmillan & Creelman 1991).

Using the comparison method, with durations of many seconds retro-
spectively judged, Ornstein (1969) asked participants to make a mark on a 
second line when given a first line, indicating a comparison of durations. Sev-
eral  researchers have discussed this method (e.g., Block 1974; Grondin 1993; 
Rammsayer 2014). Recently, Mioni, Stablum, McClintock, and Grondin (2014) 
 emphasized the fact that when slight variations are introduced in reproduc-
tions, different results are found. They compared conditions in which partici-
pants were instructed either: (a) press only at the end of the interval after having 
been presented a signal marking the beginning of the interval to-be reproduced, 
(b) press to start and stop the interval, or (c) press continuously during the inter-
val. The highest  accuracy (closest to the target time) was obtained when using 
keypresses to start and stop the reproduction, but less variability was obtained 
with the method involving continuous pressing.

3.2.1 Time-Order Effects
In psychophysics, presenting intervals successively induces what is called a 
time-order error (Eisler, Eisler, & Hellström, 2008; Hellström 1985).  Moreover, 
using a roving or a reminder method also has an impact on duration discrimi-
nation: Discrimination is better with the reminder method—that is, with 
the standard interval kept constant in the first position (Grondin & McAuley  
2009; Hellström & Rammsayer 2004). The time-order effect is sometimes 
referred to as a Type-A effect, and the fact of having better performances in 
the  standard-comparison order than in the comparison-standard order is 
 sometimes referred to as a Type-B effect (Bausenhart, Dyjas, & Ulrich, 2015), 
or standard position effect (Hellström & Rammsayer 2015). Time-order errors 
tend to be negative for relatively short durations—that is, the second duration 
is judged as longer than the first—but tend to be positive for relatively longer 
durations, especially those judged in retrospect—that is, the first duration is 
judged longer than the second (Block 1985).
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To account for the standard position effect, Hellström (1979) proposed a 
sensation-weighting model. According to this model, in a discrimination task 
a person compares the scaled subjective difference between the first and the 
second stimuli (see Hellström & Rammsayer 2015). Dyjas, Bausenhart, and 
Ulrich (2014) proposed that the standard position effect can be explained by 
an internal reference model, which stipulates that discrimination is not based 
on the internal representation of the standard and comparison intervals, but 
rather on the internal reference that is built up dynamically from trial to trial 
during the experiment. In this model, in each experimental trial, participants 
compare the updated internal reference to the second stimulus.

3.3 Other Timing Methods
Another way to investigate processes of prospective timing is to return to 
Fechner’s traditional methods. Kuroda and Hasuo (2014) described ways of us-
ing method of limits and of adjustments, in addition of the constant method. 
For instance, a participant can be presented the standard and comparison in-
tervals, and adjust the comparison interval to make it equal to the standard 
(method of adjustment). Over a series of trials, the mean adjusted value of 
the comparison intervals would provide a point of subjective equality (pse) 
with the standard, and the variability (standard deviation) of the series of ad-
justed values could be interpreted as a just noticeable difference ( jnd; Hasuo, 
 Nakajima, & Ueda, 2011).

A strict form of the method of limits is not used in time perception  studies, 
but the adaptive procedure could be seen as a variation of this method as 
it may involve ascending trials and descending trials from specific points 
above or below threshold. Basically, after each trial, the level of difficult in a 
 discrimination task is adjusted after each trial. With an adaptive procedure, 
an  experimenter should decide what the magnitude of the changes are after a 
correct and after an incorrect response, when a series of trials ends, how many 
series of trials are necessary, and how the threshold is operationally  defined 
and calculated (Macmillan & Creelman 1991). In the classical  adaptive  method 
called the staircase procedure, the steps up and down of the  comparison 
 stimulus are changed by a fixed amount, and a series of trials could end after a 
 certain number of changes or a certain number of trials. There are several  other 
adaptive procedures,  including parameter estimation by sequential  testing 
and the  procedures based on a Bayesian procedure or maximum  likelihood 
(Shen 2013). The adaptive procedure usually provides a good approximation 
of a threshold value with a reasonable number of trials and is often used in 
 duration  discrimination studies (e.g., Rammsayer 2014).
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With the constant method, a series of comparison intervals is select-
ed and one of these, in a random order from trial to trial, is presented after 
the  standard. After multiple presentations of each comparison intervals, a 
 psychometric function can be drawn, plotting the probability of responding 
that the  comparison interval is longer than the standard on the Y-axis, as a 
function the length of the comparison intervals on the X-axis (Grondin 2008a, 
2010). On a psychometric function, the pse is given by the value on the X-axis 
corresponding 50% on the Y-axis (see Figure 2.2). It is classical to define the 
difference threshold as the difference, divided by 2, between the X values 
corresponding to 75% and 25% on the Y-axis. These two percentages corre-
spond to mid-point between perfect discrimination (0 or 100%) and random 
responses (50%).  Another  frequent way of expressing the difference threshold 
is to estimate one standard deviation on the psychometric function (Killeen & 
Weiss 1987).

The use of the constant method and of a psychometric function raises the 
question of the model adopted for drawing the function through the data points. 
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Figure 2.2 Psychometric function used for estimating the difference threshold with the constant 
method. “Co > St” means that the comparison interval is judged as longer than the 
standard (250 ms). The model for fitting the data points in this example is the cumu-
lative normal distribution, and the dashes indicate the point of subjective equality 
(Adapted from Grondin 2008a)
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In psychology, it is typical to assume that a phenomenon is  distributed normal-
ly, and, thus, a Gaussian model is adopted (cumulative normal  distribution; see 
for instance Laflamme, Zakay, Gamache, & Grondin, 2015). Among the other 
models, Macmillan and Creelman (1991) proposed the logistic and the Weibull 
functions, and the reader will also find the use of a pseudo-logistic function 
in the time perception literature (Grondin 2001a; Killeen,  Fetterman, & Bizo, 
1997).

In a variant of the constant method, called the single-stimulus method, a 
participant makes a judgment after each interval presentation. This involves 
assigning the interval to one of two categories, short or long; there is no pre-
sentation of the standard on each trial (see for instance Grondin, Laflamme, & 
Gontier, 2014, Experiment 3; Kuroda, Grondin, Miyazaki, Ogata, &  Tobimatsu, 
2016). A classical method in the animal timing literature, called the bisec-
tion method, is a widely used variant of this method in human timing studies  
 (Mioni, Meligrana, Grondin, Perini, Bartolomei, & Stablum, 2015a; Mioni,  
Zakay, & Grondin, 2015b; Penney, Gibbon, & Meck, 2008; Chapter 4, this vol-
ume). With this method, a series of intervals are selected and the shortest and 
the  longest intervals (referred to as standards) of this series are first presented 
several times. In the following trials, each interval of this series is presented 
several times, in a random order, and on each trial the interval should be 
 categorized as closer to one of the two standards. As for the constant method, 
a  psychometric function can be drawn from these data. There are many other 
methods in the study of animal timing, including temporal generalization, 
which is also used in the human timing literature (Wearden & Lejeune 2006). 
With this method, the mid-point interval in a series of intervals is first pre-
sented several times and in subsequent trials, participants indicate whether 
the interval presented is or is not of the same length as the standard.

Depending on the specific field of interest, specific variants of methods 
can be used. Researchers interested in motor behavior and timing have used 
a production method, which is indeed most often a task where a participant 
first listen to a series of isochronous sounds and eventually tries to synchro-
nize finger tapping with the sound; at some point, there is no more sound but 
the participant continues to tap at the same pace. The dependent  variable of 
 interest is the variability of the inter-tap intervals in the continuous phase, and 
sometimes the mean inter-tap intervals. It is possible to distinguish the part 
of variance, in the overall observed variance, belonging to the motor system 
 (implementation of the tap) and the part belonging to the internal  timekeeping 
system (Wing & Kristofferson 1973).

Finally, researchers more interested in rhythm perception than interval 
timing often use duration discrimination methods, but instead of presenting 
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 single intervals (a single standard or a single comparison interval), multiple 
successive standard or comparison intervals are presented. Increasing the 
number of intervals generally leads to improved discrimination (for a review, 
see ten Hoopen, Miyauchi, & Nakajima, 2008). Beyond four presentations, in 
the auditory modality, there is not much improvement to expect (ten Hoopen, 
van den Berg, Memelink, Bocanegra, & Boon, 2011); and, in the visual modality, 
the gain with multiple presentations depends on the duration under inves-
tigation and on presenting or not the standard and comparison intervals in 
 continuity (Grondin 2001a).

4 Prospective Timing Processes

Much evidence reveals that attention to time is involved in prospective tim-
ing. Block (1990) criticized this concept because of the descriptive nature of 
the term, without any experimental or theoretical work on underlying pro-
cesses. Later, Block (2003), for example, came to clarify and accept the term. 
He and others suggested that it involves what is now called recursive reminding 
(e.g., Hintzman 2004). If a person is asked to indicate when an experimenter- 
specified duration has elapsed, he or she often thinks: “Is it time now?” Every 
time that the person has that thought, it retrieves a time-dated memory of 
the previous occurrence. How often that happens depends on secondary-task 
 attentional demands: If a person has to perform another cognitive task, the re-
cursive reminding process is interrupted. Thus, duration productions lengthen, 
for example.

However, this explanation does not completely reveal the reason why cogni-
tive load affects prospective duration judgments. The attentional-gate model 
(agm; see, for example, Zakay & Block 1997) provides that kind of explanation. 
In this model, attention to time affects prospective duration judgments. A clas-
sical explanation of prospective timing is based on an internal-clock device 
made of a pacemaker emitting pulses, and of a counter accumulating these 
pulses, the perceived duration being proportional to the number of pulses 
 accumulated. The agm proposed by Zakay and Block (Figure 2.3; see Block & 
Zakay 2008; Zakay & Block 1997, for a description) determines the number of 
pulses, with more pulses being accumulated when more attention is allocated 
to the passage of time, and less to a nontemporal secondary task (in the case 
of a dual-task paradigm).

Perhaps both ideas are needed, recursive reminding to explain what it means 
when a person attends to time, and attentional gating to explain  dual-task  
 interference effects. Additional evidence on prospective duration judgments 
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comes from many experiments that have been reviewed in two major meta-
analyses (Block, Hancock, & Zakay, 2010; Block & Zakay 1997) of studies us-
ing durations greater than 3 s. These findings reveal that variables involving 
cognitive load affect prospective timing. Mainly, these are response demands 
(active vs. passive), attentional demands (divided or selective vs.  unitary), and 
processing difficulty (difficult vs. easy). With any of these cognitive demands,-
prospective duration judgments made with the production method  lengthened 
and verbal estimates decreased, for example.

Zakay (1992b, 2015)) reported research on temporal relevance and tem-
poral uncertainty as variables that affect prospective timing. If an interval 
is relevant to a person’s current concern or if the person is uncertain about 
when an  interval will end, prospective temporal productions lengthen. This 
model supports a model of prospective timing that emphasizes attention. For-
example, waiting intervals are perceived as longer than same clock-time in-
tervals  without  waiting, because while waiting time is a major concern and 
the end of the  waiting is not certain. Zakay (2005) showed that when timing 
is done  concurrently with a nontemporal task, the duration of the interval is 
perceived to be longer when a person is instructed to treat timing as a primary 
rather than as a secondary task.
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Intention
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Figure 2.3 The attentional-gate model of prospective timing ( from Block & Zakay 2008; Zakay 
& Block 1997)
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5 Retrospective Timing Processes

In another duration judgment paradigm, a participant is not informed in 
 advance that time has to be estimated. Experiments using this retrospec-
tive paradigm are far less numerous than those using the prospective para-
digm, probably because only one duration estimate may be obtained before 
the participant is aware that time judgments are of interest. Sometimes, at 
the onset a cover story or cover task might be used to lead participants to 
think that duration is not relevant (Grondin & Laflamme 2015). Retrospec-
tive judgments concern the remembered duration of past episodes, and they 
are based much more on memory than on attention to time. Meta-analytic 
findings (Block, Hancock, & Zakay, 2010; Block & Zakay 1997) reveal that vari-
ables involving cognitive load do not affect retrospective judgments. The im-
portant variables are segmentation (e.g., high-priority events or contextual 
interruptions) and other variables that affect memory encoding and retrieval. 
A contextual change memory model is implicated: If a person is able to re-
member more changes in context, retrospective duration judgments lengthen  
(Block & Reed 1978).

Two main methods have been most frequently used to study retrospective 
timing: the method of reproduction and the method of verbal estimation. 
When intervals under investigation are not too long, it is reasonable to consid-
er the possibility to ask a participant to reproduce the duration. In such a case, 
this means that during the encoding phase (the interval to be  reproduced), the 
participant is not informed that the duration (of the activity for instance) will 
have to be reproduced. For very long intervals, it is not realistic to adopt the 
reproduction method. Using verbal estimation is more practical. The problem 
that occurs with the verbal estimation is that people tend to round up their 
judgments to the nearest second if intervals are relatively brief, to the nearest 
5 or 10 seconds if intervals last at least one minute, and to the nearest half- 
minute, or even minute, if the intervals last several minutes. One feature of ret-
rospective judgments is that people should not be aware of the need to judge 
duration. Consequently, after completing a single trial, participants are aware 
of the importance of the duration of an activity or event. One way of collecting 
more than one judgment per participant is to ask to complete a series of activi-
ties before asking for duration judgments. Such a strategy was adopted by Boltz 
(1995), which involved a series of brief melodies (<15 s) to be learned before 
reproducing their duration (Experiment 1) and the  presentation of long films 
(Experiment 2). Brown and Stubbs (1988) used a multiple-activity approach. 
They presented musical excerpts lasting 96 to 570 s. Boltz presented brief vid-
eotape sequences. Grondin and Plourde (2007) asked participants to complete 
five cognitive tasks (e.g., counting backward, recalling names of  animals in 
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 alphabetical order) lasting 2–8 minutes, before asking for a verbal estimate of 
the duration of each of these tasks.

Researchers using retrospective timing are usually interested in the accu-
racy of judgments, not by the variability of estimates as is often the case for 
prospective timing. Limiting an investigation to a single trial actually makes 
it difficult to study the variability issue. A way to approach the problem is to 
ask not only for a verbal estimate of the activity, but also for a window within 
which the duration is certainly included. For example, a researcher may ask 
for the maximum and minimum duration of the activity (Bisson & Gron-
din 2013; Grondin & Plourde 2007; Tobin, Bisson, & Grondin, 2010; Tobin & 
 Grondin 2012). The difference between the maximum and minimum could be 
 interpreted as an uncertainty window, of a measure of variability.

6 Temporal Illusions

Like many other perceptual processes, time perception suffers from illusions 
that result from the processes underlying prospective and retrospective tim-
ing. Temporal illusions occur when the perception of duration of an interval 
do not faithfully represent the objective (clock-time) duration of that interval.

A well-known illusion is the filled-duration illusion: Empty intervals are 
perceived to be shorter or longer than filled intervals, which objectively en-
dure exactly the same clock time. The direction of the illusion depends on 
the  paradigm. If timing is done prospectively, then empty intervals, which do 
not demand many attentional resources for information processing, will be 
perceived as longer than filled intervals, which demand many attentional re-
sources (e.g., Wearden, Norton, Martin, & Montford-Bebb, 2007). The opposite 
is the case regarding retrospective estimates. In this case, empty intervals are 
perceived as shorter than same clock time compared to filled intervals.

Thus, the perceived duration of an interval depends on cognitive load 
during the interval (Block et al. 2010.) This contradicts the essential charac-
teristics of physical time. For example, it is often said that time flies when a 
person is having fun. The reason is that while having fun, attention is focused 
on the “fun” aspects (e.g., an attractive film) and not on time. Thus, the same 
 clock-time interval will be perceived as longer when a person suffers instead of 
having fun. This is, of course, another illusion.

The “watched-pot” phenomenon is another temporal illusion. When a per-
son waits for something to occur (when the water in a pot will boil), the main 
concern is time (when will this happen), and as a result most attentional re-
sources are focused on time. This results in a longer temporal experience as 
compared to a regular interval (Block, George, & Reed, 1980).
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An everyday situation in which people experience this illusion is when they 
have to wait for someone to come or some event to happen. Waiting intervals 
are perceived as longer than same clock-time intervals, without waiting. There 
are many more temporal illusions, most of them are prospective and reflect 
the dependency on attentional resources. The agm provides a good explana-
tion for that.

Temporal-illusions are an example for the dependency of subjective tim-
ing processes on measurement methods, interval durations, and other factors. 
For example, Hasuo, Nakajima, Tomimatsu, Grondin, and Udea (2014) found 
that for short intervals (40–520 ms) the illusion was more likely to occur with 
magnitude estimation than with the method of adjustment. The magnitude of 
the illusion increased as the interval duration lengthened. Taking a somewhat 
philosophical perspective, one may ask if not all temporal experience, includ-
ing the flow of time itself, is actually an illusion (Gruber & Block 2013). Subjec-
tive durations are rarely identical with objective durations.

7 Temporal Dating of Memories

For centuries, dating to Aristotle, philosophers have thought that time is 
intimately related to memory. Theorists such as James (1890) and Hooke 
(1705/1969; see Hintzman 2003) proposed ideas on time and memory in the 
brain. These earliest ideas were reviewed by Hintzman (2003) and others 
(Block &  Zakay 2008). Now, researchers have revealed how such temporal 
contiguity— proximity in time—functions (Hintzman 2016). Hintzman con-
cluded that there is little or no evidence of temporal organization by contigui-
ty per se. He said that research does not support the hypothesis that memory is 
not  organized by time or by the principle of contiguity. Then he also elaborated 
on the present status of these ideas. In our view, time perception is mainly 
 automatic only in some kinds of judgments that do not require voluntary at-
tention. Automatic encoding might apply only to temporal dating of events, 
not necessarily to the dual-task interference seen in prospective duration 
 estimation. Prospective duration estimates are based on attentional processes, 
as the agm suggests. Temporal dating of specific memories is based on other 
processes, which involve long-term memory.

8 Prospective Memory: Timing the Future

Another interesting topic, which relates to processes involved in prospective 
and retrospective duration judgments, concerns prospective memory, which 
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has also been called prospective remembering, or timing the future. These tasks 
involve intending to perform a time-based or an event-based action at some 
future time or occasion (Block & Zakay 2006; Graf & Grondin 2006; Labelle, 
Graf, Grondin, & Gagné-Roy, 2009; Mioni & Stablum 2014). For example, what 
role does temporal memory of past events serve in remembering to perform 
future actions? If people think about something that might likely occur (per-
haps with what is called stimulus-independent mentation, or daydreaming), 
what time-related processes are involved?

Time-based and event-based prospective remembering processes are simi-
lar to those implicated in prospective and retrospective duration judgments, 
respectively. In timed-based tasks, participants are asked to make a response 
when they think that an experimenter-specified duration has elapsed; this is 
similar to a prospective duration estimate. In event-based tasks, people are 
asked to respond when a particular event (such as presentation of an animal 
word, or in everyday life, meeting a specific person) is encountered.

Time-based prospective memory tasks are similar to those involved in labo-
ratory studies on prospective duration judgments, such as using the method of 
production. While is performing another task, the person must signal when a 
specified time interval (such as 30 s) has ended. The findings reveal that, such 
as in prospective duration judgments, attentional demands of the nontem-
poral task affect these processes. In everyday life, time-based tasks are often 
performed successfully by using reminder methods, such as calendars or elec-
tronic notes.

Event-based prospective memory tasks rely on the intent to respond in a 
certain way when a situation is encountered. Meeting a person or seeing a par-
ticular kind of event occur may lead to automatic retrieval of the intent. Of 
course, this is also somewhat likely to lead to failures to remember the previ-
ous intent.

9 Summary

In this chapter, we reviewed the history, methods, and current status of psy-
chological research on timing and time perception, focusing mainly on pro-
spective and retrospective judgments of time. Time perception varies as a 
function of duration, or interstimulus interval. Different phenomena argu-
ably occur at about 100 ms, 1.3 s, 3 s, 5–7 s, and longer. Various methods are 
used, including those that require knowledge of conventional time units as 
well as others that do not. The latter have been used in studies of nonhu-
man animals and young children. Prospective time judgments, which involve 
a situation in which the estimation of durations is relevant and important, 
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are affected by other information-processing demands. Retrospective dura-
tion judgments, on the other hand, depend mainly on retrieval of memories 
from the time  period, and those are mainly affected by contextual encod-
ing and retrieval processes. Other kinds of time-related phenomena occur 
in prospective memory situations, for example. Time-based remembering 
processes are similar to those of prospective timing, especially using the 
production method.  Event-based  remembering relies on memory processes 
similar to those involved in retrospective duration judgments. We did not 
review evidence on the many brain areas and processes involved in psycho-
logical time, mainly because the  evidence is still unclear; future researchers 
should focus on that issue in order to deepen the understanding of these  
processes.
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Chapter 3

Assessing Duration Discrimination: Psychophysical 
Methods and Psychometric Function Analysis

Karin M. Bausenhart, Massimiliano Di Luca and Rolf Ulrich

1 Introduction

An important aspect in timing and time perception research is investigating 
the ability to perceive and compare temporal intervals, that is, the study of 
duration discrimination (Bindra & Waksberg 1956; Grondin 2010; Matthews & 
Meck 2016). Just as in every perceptual domain, a central problem in this field 
is how the relation between physical stimulus input (e.g., a tone lasting for 
500 ms) and the sensation evoked by this input (the perceived duration of this 
stimulus) can be quantified. The scientific study of this relation is called psy-
chophysics (Fechner 1889; Gescheider 1997).

One fundamental issue in psychophysics is the measurement of the dif-
ference threshold (just noticeable difference, JND; difference limen, DL), or 
in other terms, discrimination sensitivity. It is often loosely defined as the 
 minimal physical difference between two stimuli (e.g., a 500 ms vs. a 550 ms 
interval) that a participant can just notice. A second important concept in 
psychophysics concerns the magnitude of the sensation evoked by a given 
stimulus. Typically, this sensation magnitude is determined by identifying the 
physical magnitude of a stimulus that is judged to be equal to the magnitude 
of another stimulus defined as the standard stimulus. For example, one might 
pinpoint that an auditorily presented temporal interval must be 480 ms to ap-
pear as having the same duration as a visually presented standard interval of 
500 ms duration. This point along the duration dimension is termed the point 
of subjective equality (PSE), and just as in the example above, it often does not 
 correspond to the point of objective equality (POE), which indexes physical 
equality with the standard stimulus.

Although these definitions appear simple, the experimental determination 
of these indices of discrimination performance can be quite cumbersome. 
For  example, PSE can be influenced by perceptual and decisional biases, 
and this may even depend on the specific procedures employed for data collec-
tion. For example, when a participant is asked to compare the duration of two 
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successively presented identical intervals, there may be a general tendency 
(i.e., bias) to judge the second presented duration as longer than the first pre-
sented one. Another major problem is that discrimination performance ran-
domly fluctuates from moment to moment. For example, sometimes a given 
physical  difference between two stimuli is perceived, while sometimes this dif-
ference is not perceived. To overcome such obstacles, 19th century researchers 
 already   invented various psychophysical tools for measuring discrimination 
 performance, such as the method of constant stimuli (Hegelmaier 1852; Renz &  
Wolf 1856).

In this chapter, we review several of these tools and methods that are espe-
cially useful for measuring duration discrimination performance. Numerical 
examples are provided to illustrate these psychophysical procedures. In the 
first section, we introduce the standard psychometric function for compara-
tive judgments and its associated parameters. We discuss various experimental 
paradigms, which are typically used to collect such data for assessing discrim-
ination performance. In the second section, we present data collection and 
analysis methods based on equality judgments. For each type of judgment, we 
introduce several parametric and non-parametric procedures for computing 
indices of discrimination performance from these data, including exemplary 
Matlab scripts implementing these procedures (see book’s GitHub repository). 
In the final conclusion, we briefly review several advanced toolboxes available 
for assessing discrimination performance.

2 Comparative Judgments

Several of the experimental paradigms, which are typically employed in timing 
research, involve comparative judgments. Specifically, these judgments require 
that participants decide whether a given stimulus duration is longer or shorter 
than a certain target duration. For example, in the so-called reminder task, the  
participant receives two successive durations in each experimental trial. One 
of the two durations is the target duration that is kept constant across a block 
of trials. This duration is traditionally called the standard or reference dura-
tion s (Guilford 1954; Woodworth & Schlosberg 1954). The other duration varies 
 randomly from trial to trial and is usually called the comparison or test dura-
tion c.

In most experiments, several different comparison durations are used, some 
larger than s and some smaller than s. Typically, between 6 and 12 different 
values of c are arranged symmetrically around s. It is convenient to index these 
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comparison levels as  1 , , kc c…  from the smallest to the largest.1 These selected 
comparison levels are presented several times (usually 10 to 20 repetitions) 
during the course of a single experiment in a random sequence. The order of s 
and c may be either constant (fixed stimulus order), for example, in each trial 
s is presented first, or it may vary randomly from trial to trial (random stimulus 
order). In the following, we will introduce some typical experimental para-
digms employing either fixed or random stimulus order and describe several 
methods for analyzing the data emerging from these paradigms.

2.1 Fixed Order of Standard and Comparison Stimuli
Presumably the most elementary psychophysical approach uses a fixed order 
of s and c (e.g., Luce & Galanter 1963). For example, in the classical reminder 
task, s precedes c in every trial. Participants are typically asked whether the 
first or second stimulus appears longer, and consequently select the response 
R1 or R2, respectively. It is important to note that participants have to choose 
one of the two response alternatives in every trial – if a judgment cannot be 
made with certainty, the subject is asked to choose the alternative that seems 
most appropriate or simply to guess an alternative. After each trial, the experi-
menter simply records whether the participant responded with R1 or R2.

Table 3.1 contains an outcome example of such a psychophysical experi-
ment comprising k = 9 comparison durations centered symmetrically around 
s = 500 ms. For these data, the relative frequency fi of responding with R2 as a 

1 Usually the two extreme values in the range, c1 and ck, are selected in such a way that the 
comparisons cover the full range of the psychometric function from 0 to 1. Weber fractions 

Table 3.1 Exemplary outcome of a psychophysical experiment with s = 500 ms and nine 
comparison levels c1 ,...,c9 ranging from c1 = 300 ms to c9 = 700 ms. Row ni shows 
how many responses per comparison level ci were recorded during the course of 
the experiment. For most c levels, data of 15 trials were available, yet for some levels 
fewer data were recorded – for example, because the participant forgot to respond or 
occasionally pressed the wrong response key on the keyboard. The rows n1,i and n2,i 
show the number of R1 and R2 responses, respectively. The row fi contains the relative 
frequency of R2 responses per c level.

c1 c2 c3 c4 c5 c6 c7 c8 c9

300 350 400 450 500 550 600 650 700

ni 15 15 14 15 12 15 15 15 14
n1,i 14 11 12 5 3 0 1 0 0
n2,i 1 4 2 10 9 15 14 15 14
fi 0.07 0.27 0.14 0.67 0.75 1.00 0.93 1.00 1.00
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Figure 3.1 Relative frequency of responding with R2 (i.e., judging the second presented duration 
c as longer than the first presented duration s) as a function of comparison duration 
(open circles), for the example data given in Table 3.1. The solid line shows the best 
fitting psychometric function derived by means of probit analysis.

function of comparison level ci is depicted in Figure 3.1. Apart from the statisti-
cal noise involved in such data, one would expect that this relative frequency 
increases with increasing duration of c.

2.1.1 Probit Analysis
In order to enable a more comprehensive analysis of the data emerging from 
such an experiment, one typically fits a psychometric function Ψ(c) to the 
 relative frequencies of R2 responses per c level (e.g., Luce & Galanter 1963). 

 may help to select these values. For example, assume that s = 500 ms and the participant is 
asked to discriminate auditory intervals, for which the Weber fraction typically amounts to 
approximately 0.1 (Rammsayer 2010; Rammsayer & Ulrich 2012). As a rule of thumb, c1 may  
be selected as s · (1 − 4 · 0.1) and ck as s · (1 + 4 · 0.1). For s = 500 ms, this would yield c1 = 300 ms 
and ck = 700 ms.
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For example, the cumulative density function (cdf) of a normal distribution 
has been often used as a mathematical model for Ψ(c). This function increases 
monotonically from 0 to 1 with increasing values of c and can be expressed as

( )Ψ Φ
− =  

 

m
s

c
c ,            (1)

where Φ denotes the cdf of a standard normal distribution, m is the location 
parameter, and s represents the slope of Ψ. This approach of modeling the 
psychometric function is also called probit analysis (Finney 1952).2

The parameter m denotes the level of c at which the probability of respond-
ing with R2 is equal to 0.5, that is, at this level the two responses R1 and R2 are 
equally likely. This level is often called the PSE, because it denotes the dura-
tion of c, which is judged to have the same duration as s. The PSE needs not 
to be equal to s. For example, the PSE is often smaller than s because partici-
pants usually tend to overestimate the second duration compared to the first 
one, a phenomenon termed the time-order error (Eisler, Eisler, & Hellström, 
2008; Köhler 1923). In general, the difference between objective physical equal-
ity and subjective equality has been termed constant error (CE) and has been 
defined as cE = PSE – s in the psychophysical literature. Shifts of the PSE away 
from the POE may reflect a perceptual or a decisional bias.

A second parameter of major importance that can be computed from a 
 psychometric function is the DL or JND. This parameter indexes the 
 discrimination sensitivity of a participant, with smaller values of DL indicating 
a higher level of sensitivity. The DL is related to the steepness of the 
 psychometric  function. It is typically defined as half its interquartile range, 
that is, ( )0.75 0.25 / 2,= −DL c c where  0.75c  and  0.25c  represent the stimulus  levels 
at which the response R2 is elicited with probability 0.75 and 0.25, respectively 
(Luce & Galanter 1963). Consequently, DL indexes the duration difference 
 between s and c, which enables the subject to identify c as being either shorter 
or longer than s with an accuracy level of 75%. For the function embodied in 
Equation 1, the DL is given by 

= 0.75  ·DL zs  (2)

2 Other functional families than the normal distribution are often used to model the psycho-
metric function, such as the logistic or the Weibull function. However, the logistic and the 
probit model produce virtually the same results (Lord, Novick, & Birnbaum, 1968, p. 399).
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where  0.75z  is the 75% percentile of the standard normal distribution, i.e.,  
z0.75 ≈ 0.6745.3

An especially efficient method for estimating the parameters PSE and DL is 
Fisher’s maximum-likelihood procedure. In brief, one uses Equation 1 to com-
pute the likelihood of the observed data,

( ) ( ) ( )m s 1 ,2 ,

1| ,  1= Ψ Ψ= Π ×  −  
ii nnk

i i iL Data c c
 

(3)

where n1,i and n2,i denote the frequencies of observed R1 and R2 responses at 
each comparison level (compare Table 3.1). The maximum likelihood estimates 
of m and s are those numerical values that maximize this likelihood function. 
The maximum of this function can be found numerically using a computer, a 
procedure known as numerical optimization.

A simple Matlab (R2016b) script (“MLEPsyProbit.m”) for performing this 
 optimization is available (see book’s GitHub repository). It finds the parame-
ters m and s at which the function  ( )m s| ,L Data  has its extremum. This  
script requires as input the vectors ( )1 , , kc c c= … , ( )1 1,1 1 ,, , ,= …

kn n n and 
( )2 2,1 2,, ,= …

kn n n  and provides the maximum-likelihood estimates of PSE and 
DL together with their standard errors and their corresponding 95% confi-
dence intervals as outputs. This script computes the standard errors from the 
observed Fisher information. Applying the script to the data in Table 3.1, one 
obtains PSE = 430.9 ms, Se = 13.3 ms with a 95%-confidence interval of  
CI = [404.9, 457.0], and DL = 57.6 ms, Se = 8.8 ms with CI = [40.5, 74.8]. On the 
basis of the PSE result, the script computes CE = −69.1 ms, Se = 13.3 ms with  
CI = [−95.1, −43.0]. The CE indicates a systematic overestimation of the com-
parisons relative to the standard duration s = 500 ms, which might be attrib-
uted, for example, to a negative time-order error. Figure 3.1 depicts the relative 

3 Several researchers (Treutwein 1995; Treutwein & Strasburger 1999; Wichmann & Hill 2001) 
have suggested to include also lapse parameters in the estimation of psychometric functions 
to account for trials in which the participant commits stimulus-independent lapses due to 
phasic inattention or “finger errors”. These events will result in scaled psychometric func-
tions, which do not cover the full range from 0 to 1. Even though such processing failures are 
rare events, typically estimated to occur in between 0% and 5% of trials (Wichmann & Hill 
2001), their presence can nonetheless distort the estimation of DL. Therefore, if empirical 
evidence suggests the presence of lapses, corresponding extended psychometric functions 
should be used for data analysis (Wichmann & Hill 2001, also see Table 3.3 for a list of tools 
available for performing such advanced analyses). Models comparison statistics can be used 
as a principled way of choosing the function with or without lapses.
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 response proportions fi from Table 3.1 and the resulting psychometric function 
derived by this probit analysis, which is a standard psychophysical approach 
for estimating PSE, DL, and CE.

2.1.2 Pseudo-Gaussian Function
Killeen, Fetterman, and Bizo (1997) proposed an alternative to Equation 1 that 
often provides an excellent fit to observed data (Allan & Gerhardt 2001; Birn-
gruber, Schröter, & Ulrich, 2014; Grondin 2001). This approach takes Weber’s 
law into account, according to which variability in perceived duration should 
linearly increase with physical duration. Specifically, let S and C represent the 
internal representations of the standard s and the comparison c, respectively. 
In addition, assume that the internal difference ∆ = C − S follows a normal 
distribution with mean E[∆|c] = c − (e + s), where the parameter e has the sta-
tus of a constant error. If the standard deviation of the difference ∆ follows 
Weber’s law  · , 0,σ = >c w c w then the psychometric function is given by the 
Pseudo-Gaussian function,

( ) ( )e
,

 · 
Ψ Φ

 − + 
=  

 

c s
c

w c  

(4)

where Φ again denotes the cumulative density function of a standard nor-
mal variable, and the parameters are the constant error e and the Weber 
fraction w.4 This Pseudo-Gaussian function is actually not a genuine psy-
chometric function because it does not converge to 1. However, this devia-
tion from 1 is negligible for realistic values of w. The supplementary Matlab 
script “MLEPSyPseudoGaussian.m” (see book’s GitHub repository) provides 
maximum likelihood estimates of the parameters e and w. Applying this script  
to the data in Table 3.1 yields for e an estimate of −86.8 ms, Se = 12.3 ms,  
CI = [−110.8, −62.7] and for w an estimate of 0.190, Se = 0.026, CI = [0.138, 0.241].

Moreover, for this Pseudo-Gaussian function, it can be shown that the PSE 
is given by

e= +PSE s  (5)

4 As a further extension, one may replace σ = ·c w c  by the generalized Weber’s law

σ = + +2
1 2 3· ·c w c w c w  (see Killeen et al. 1997). A similar model has been proposed 

by García-Pérez (2014). Also note that for w1 = w2 = 0 this extended model becomes a special 
case of the probit model discussed above.
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and the DL by

( )
( )

e 0.75
2

0.75

·
 · 

1 ·
= +

−
DL

w z
s

w z  
(6)

with z0.75 ≈ 0.6745. Inserting the above estimates into these equations yields 
PSE = 413.2 ms and DL = 53.7 ms. It can be noticed that these estimates differ 
numerically from the ones of the standard approach embodied by  Equation 1, 
which must be attributed to the different assumptions underlying both models.

Figure 3.2 depicts the relative response proportions fi from Table 3.1 and the 
psychometric function resulting from the Pseudo-Gaussian model. A potential 
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Figure 3.2 Relative frequency of responding with R2 (i.e., judging the second presented duration 
c as longer than the first presented duration s) as a function of comparison duration 
(open circles), for the example data given in Table 3.1. The solid line shows the best 
fitting psychometric function derived by means of the Pseudo-Gaussian model.
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drawback of this Pseudo-Gaussian model is that the estimate of DL is affected 
by the size of e, that is, the constant error.

2.1.3 Spearman-Kärber Method
In addition to the parametric approaches discussed above, one can also use a 
nonparametric approach, the Spearman-Kärber method (Kärber 1931; Spear-
man 1908), for estimating the location and the spread of the psychometric func-
tion (Miller & Ulrich 2001; Sternberg, Knoll, & Zukofsky, 1982). This method has 
several advantages. In contrast to parametric approaches, the  Spearman-Kärber 
method does not require specific assumptions about the functional family 
of the true underlying psychometric functions. Also, it allows for estimating 
higher-order moments as skewness and kurtosis, in addition to location and 
spread of the psychometric function. Moreover, this method is computation-
ally efficient compared to others, because it does not require an iterative fitting 
procedure. Finally, parameter estimates obtained with this method are often  
even less biased and less variable than parameter estimates obtained by em-
ploying parametric approaches (Miller & Ulrich 2001; Ulrich & Miller 2004).

In the Spearman-Kärber method, the range of comparison stimuli is sub-
divided into bins, each ranging from ci−1 to ci, for i = 1,...,k. The relative re-
sponse frequencies fi associated with each stimulus level ci are assumed to be 
 uniformly distributed within each corresponding bin. Thus, the probability 
density within each bin is estimated as (   fi – fi–1)/(ci – ci–1). The resulting his-
togram of probability densities approximates the continuous true cumulative 
distribution function underlying the data. Each rth raw moment m' r  of this 
psychometric function can then be calculated as 

( ) ( )1 1
1 1 1

1
1

 · 1
.

1

+ +
+ − −′
=

−
=

− −

+ −∑
r r

k i i i i
r i

i i

f f c c
m

r c c
 (7)

It must be noted that in this calculation, the values of the most extreme 
 comparison levels c0 and ck+1 are not included in the actual experimental de-
sign but must be determined such that true values of f0 = 0 and fk+1 = 1 can be 
assumed.

This step is crucial whenever f1 > 0 or fk < 1, that is, whenever the observed 
psychometric function is truncated (i.e., it does not start at 0 or reach 1). For ex-
ample, this may be the case if the chosen range of comparison levels for testing 
was not broad enough to cover the whole range of the psychometric function. 
Similarly, lapses, finger errors, or simply binomial random error might cause 
such truncated psychometric functions. In this case, the specific values cho-
sen for c0 and ck+1 will affect the cdf’s raw moments, and  consequentially the 
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 estimates of location, spread, etc. derived from these raw  moments. Therefore, 
it is advised to interpret parameters obtained by means of the  Spearman- Kärber 
method especially carefully whenever truncated  psychometric  functions are 
present. Furthermore, for computing higher raw moments (i.e., r >1), it is nec-
essary to monotonize the observed psychometric function before computing 
these moments with Equation 7 (see Ayer, Brunk, Ewing, Reid, & Silverman, 
1955; Miller & Ulrich 2001, cf. also Figure 3.3).

From the raw moments, one can derive estimates of location, spread, skew-
ness and kurtosis (Miller & Ulrich 2001). For example, the first raw moment m' 1  
corresponds to the arithmetic mean and, thus, indexes the location of the 
 psychometric function (i.e., it serves as an estimate of PSE). The standard 

 deviation of the underlying cdf can be estimated with ( )2
2 1
′ ′σ = −m m .  
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Figure 3.3 Observed (open circles) and monotonized (black X and solid line) relative frequency 
of responding with R2 (i.e., judging the second presented duration c as longer than 
the first presented duration s) as a function of comparison duration, for the example 
data given in Table 3.1. The dotted vertical line corresponds to the PSE estimate 
derived by the Spearman-Kärber method.
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For comparative purposes, a convenient estimate of DL can then be approxi-
mated by multiplying s  by z0.75 ≈ 0.6745.

The provided Matlab script “SpearmanKaerber.m” (see book’s GitHub re-
pository) monotonizes the observed psychometric function and then com-
putes the Spearman-Kärber estimates of PSE, s, and DL for the example data 
contained in Table 3.1 (see Figure 3.3). By default, the extreme values c0 and 
ck+1 are set such that c1 – c0 = c2 – c1, and ck+1 – ck = ck – ck–1, that is, equidistance 
 between the first 3 and the last 3 comparison levels is assumed. The script 
outputs the observed response frequencies fi and the monotonized response  
frequencies  ,if  as well as a vector containing estimates of PSE, s, DL, and CE.  
For the example data given in Table 3.1, the corresponding estimates are  
PSE = 433.5 ms, s  = 82.1 ms, DL = 55.4 ms, and CE = −66.5 ms. These parameter 
estimates correspond quite well with the estimates derived by the probit anal-
ysis described above. In addition, this function provides bootstrap estimates 
of these parameters based on 1000 replications, including standard errors and 
CIs. For example, for pse: Se = 12.1 ms, CI = [408.3, 455.4], for s : Se = 10.6 ms, 
CI = [58.4, 100.4], for dl: Se = 7.2 ms, CI = [39.4, 67.7], and for CE: Se = 12.1 ms, 
CI = [−91.7, −44.6].5

2.1.4 Variants of Data Collection
In the preceding sections, it is assumed that in each trial a standard s is pre-
sented before the comparison duration c (i.e., reminder task). Especially in the 
domain of timing research, several variants of this basic task have been pro-
posed (for an overview, see Grondin 2010).

First, in the single-stimulus method only the comparison is presented in 
each trial. The participant then classifies each comparison as either short or 
long, presumably against an internal standard that is quickly formed from 
experiencing the comparisons during the course of the experiment (Bausen-
hart, Bratzke, & Ulrich, 2016; Dyjas, Bausenhart, & Ulrich, 2012; Nachmias 2006; 
Woodworth & Schlosberg 1954). Sometimes, researchers also present a stan-
dard s for several times at the beginning of the experiment, in order to provide 
a more explicit reference for classifying the duration of each comparison as 
short or long. In either case, when the proportion of “long” responses is plot-
ted against comparison duration, an ogive psychometric function will emerge. 
 Estimating PSE and DL then can proceed in the same manner as in the stan-
dard approach outlined above.

5 Naturally, these bootstrapped values will randomly fluctuate with each execution of the pro-
vided Matlab function.
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Second, a further methodological variant of the standard approach is the 
bisection method. Here, at the beginning of the experiment the shortest (i.e., c1) 
and the longest (i.e., ck ) comparisons are presented several times as anchor 
stimuli. During the experiment, only comparisons are presented (as in the 
single-stimulus method) and the participant must classify each comparison 
as more similar to the short or to the long anchor duration (Allan & Gibbon 
1991; Wearden, Rogers, & Thomas, 1997). The data analysis again proceeds as 
outlined above.

Third, in comparative judgments, researchers may allow for a third response 
option besides R1 and R2, i.e., an “uncertain” or “same” response (Woodworth &  
Schlosberg 1954, pp. 212–217). Historically, two response categories have been 
preferred over three response categories in psychophysics (Woodworth & 
Schlosberg 1954, p. 217). Nevertheless it is sometimes useful to employ three 
categories for theoretical reasons (e.g., Rammsayer & Ulrich 2001; Ulrich 1987) 
and more complex models of discrimination performance may be fitted to the 
data emerging from three-response categories to identify the relevant parame-
ters indicating discrimination performance (García-Pérez 2014; García-Pérez &  
Alcalá-Quintana 2013).

Finally, all data collection variants as described above may be regarded as 
instances of the method of constant stimuli, in which the researcher prese-
lects a range of comparison levels and typically presents each comparison 
level for a predetermined number of repetitions, with all trials presented in 
random order. This has sometimes been criticized as relatively inefficient, 
since many points along the psychometric function are sampled with an equal 
and large number of trials. Yet, some of these points, typically those demar-
cating threshold values as PSE and DL, are of especially high interest to the 
researcher, and an efficient data collection procedure might focus on assess-
ing these points with high precision instead. Since the threshold values are of 
course not known in advance of testing, but depend on the participants’ per-
formance, comparison levels then cannot be specified in advance. Rather, the 
experimenter’s decision about which comparison level should be presented 
in a given trial must depend on the participant’s responses given in previous 
trials. There is a vast number of data collection schemes and analysis variants 
for such adaptive testing procedures (see Kaernbach 1991; Leek 2001; Treutwein 
1995), although some caution is required when applying these procedures (e.g., 
García-Pérez 1998).

2.2 Random Order of Standard and Comparison Stimuli
In the methodological variants for data collection described in the preceding 
section, the temporal order of s and c is either the same in each experimental 
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trial, or only c is presented. In contrast, in the so-called two-alternative forced-
choice task (2AFC, sometimes also two-interval forced-choice task or 2IFC), 
this order of the standard and comparison varies randomly from trial to trial. 
Thus, in each trial, stimulus order is either 〈sc〉 or 〈cs〉. Participants typically in-
dicate whether the first or second stimulus appears longer by responding with 
R1 or R2, respectively.6 Since the order of s and c varies randomly, the range of 
c levels can be restricted to values c ≥ s, but it is also possible to employ values 
ranging from c1 < s to ck > s. In the latter case, R1 and R2 responses can be recod-
ed as c > s responses, for the stimulus orders 〈cs〉 and 〈sc〉, respectively. From 
these data, a psychometric function depicting the proportion of c > s responses 
emerges. Given a sufficiently large range of c values, and disregarding the pos-
sibility of lapses or finger errors, this function covers the full range from 0 to 1. 
Then, as a measure of discrimination sensitivity, DL is often estimated as half 
the interquartile range of this psychometric function (analogously to the pro-
cedure outlined above for the reminder task). In the former case, researchers 
often plot the proportion of correct responses (i.e., c > s  responses), resulting in 
a psychometric function restricted from 0.5 (i.e., guessing probability) to 1. An 
often-employed procedure to derive DL from such psychometric functions is to 
compute it as DL = c0.75 – s (cf. Ulrich 2010; Ulrich & Vorberg 2009).

In both cases outlined above, however, the common practice of collapsing 
the raw data across the two orders of s and c can lead to loss of information and 
even to severe distortions in the estimated parameters of the psychometric 
function. To avoid such distortions, data from the two stimulus orders 〈sc〉 or 
〈cs〉 should be plotted and analyzed separately (Ulrich 2010; Ulrich & Vorberg 
2009). Consequently, two order-dependent psychometric functions emerge in 
the 2AFC design (cf. Figure 3.4). Specifically, let S1 and S2 denote the stimulus 
in the first or second position, respectively. Define F1(c) ≡ P(R1 | 〈cs〉) and F2(c) ≡  
P(R2 | 〈sc〉) as the conditional probability with which the participant judges 
the comparison c as the larger of the two stimuli when it was presented first 
or second,  respectively. Note that the two conditional psychometric functions 
monotonically increase with c.

Importantly, these two conditional psychometric functions can differ in 
their location (“Type A order effect”) and in their spread (“Type B order ef-
fect”). A prominent example for a Type A order effect is the typically observed 
negative time-order error, in which the duration of the first of two subsequent-
ly presented intervals is underestimated compared to the second one (Eisler  
et al. 2008; Hellström 1985; Köhler 1923). Specifically, this would correspond to 

6 Participants are usually not aware that there is a constant standard, which appears first or 
second.
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a lateral shift of the conditional psychometric functions away from the POE, at 
which s = c, such that the location of the conditional psychometric function for 
stimulus order 〈cs〉 is shifted to POE + g  and the mean location of conditional 
psychometric function for stimulus order 〈sc〉 is shifted to POE – g. An example 
of a Type B order effect, which is often observed in duration discrimination, is 
a shallower slope of the conditional psychometric function for stimulus order 
〈cs〉 than for stimulus order 〈sc〉 (Bruno, Ayhan, & Johnston, 2012; Dyjas et al. 
2012; Nachmias 2006). Consequently, such an effect indicates a higher discrimi-
nation sensitivity for two subsequent intervals, when the first of these intervals 
is a standard interval with constant duration, rather than when it is varied ran-
domly from trial to trial.
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Figure 3.4 Relative frequency of responding with Rc>s (i.e., judging the comparison duration c 
as longer than the standard duration s) and psychometric functions for a hypotheti-
cal 2AFC experiment. Depicted are the order-conditional functions F1 (c) (dashed 
line and squares) and F2 (c) (solid line and circles) for stimulus orders 〈cs〉 and 〈sc〉, 
respectively. In addition, the psychometric function G(c) (grey dash-dotted line  
and x) corresponds to the observed response frequencies aggregated across presen-
tation orders. The left panel depicts a type A order effect and the right panel a type  
B order effect. These effects will be concealed by the common practice of fitting a sin-
gle psychometric function to the data aggregated across stimulus orders.  Moreover, 
whenever a Type A order effect is present in the data, the aggregated psychometric 
function G(c) is less steep than either of the order-conditional functions (see left 
panel). Consequently, dls derived from such aggregated functions will be  
overestimated.
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The preceding explanation assumes that researchers choose the stimuli pre-
sented in a 2AFC task such that they vary only along a single stimulus dimen-
sion. In a duration discrimination task, for example, s and c would be identical 
in all respects, except for their duration. In this case, a restriction emerges for 
the estimated psychometric functions. Specifically, averaging the two condi-
tional functions results in an aggregated psychometric function,

( ) ( ) ( )1 2 .
2

| |+
=

P R cs P R sc
G c  (8)

At the POE, defined as s = c, this equation simplifies to

( ) ( ) ( )1 2 .
2

| |+
=

P R ss P R ss
G s  (9)

Since R1 and R2 are the only response alternatives, their associated response 
proportions must sum to one. Consequently,

( ) 1
,

2
=G s

 
(10)

that is, the average of the two order-conditional psychometric functions must 
pass through the point (s, 0.5). This restriction must be considered when fit-
ting psychometric functions to the order-conditional data. Specifically, in-
stead of estimating two independent psychometric functions, they must be 
fitted  simultaneously and the number of the free parameters to be estimated 
for these two functions reduces to three (Ulrich 2010; Ulrich & Vorberg 2009).  
Matlab and R code for fitting logistic order-conditional psychometric functions 
under this restriction is provided by Bausenhart, Dyjas, Vorberg, and Ulrich 
(2012).

If a researcher chooses to let s and c vary along more than one dimension 
(e.g., in duration and stimulus size), then of course the constraint implied 
by Equation 10 does not hold, and the average function will pass through the 
point (PSE, 0.5) instead (García-Pérez & Alcalá-Quintana 2011). Then, the two 
order-conditional psychometric functions can be estimated independently 
from each other, just as outlined in the section on fixed order of standard and 
comparison stimuli above. The routines provided by Bausenhart et al. (2012) 
also provide the option to release the constraint at s = c and therefore can also 
be employed for the analysis of order-conditional data coming from 2AFC 
tasks which vary along multiple stimulus dimensions.
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3 Equality Judgments

Besides the comparative judgment task employed in the preceding meth-
ods, equality judgments as in the temporal generalization method are also of-
ten used in the domain of temporal cognition (e.g., Wearden 1992; Wearden,  
Edwards, Fakhri, & Percival, 1998). In the temporal generalization method, the 
standard s is usually presented for several times at the beginning of an experi-
ment. After s has been initially presented, the participant receives in each trial 
a comparison duration ci, as before spaced below and above the standard. Af-
ter each presentation of a comparison duration, the participant has to judge 
whether this duration was the same as the standard or different, by responding 
with Rsame or Rdifferent, respectively. Alternatively, the standard and the compari-
son may be presented in each trial, and the participant is also asked to judge 
whether the two stimulus durations are equal, Rsame, or not equal, Rdifferent (see 
Birngruber et al. 2014; Dyjas & Ulrich 2014). Table 3.2 contains example data 
for such an equality judgment task. When the relative frequency of a same re-
sponse is plotted against comparison duration, an approximately bell-shaped 
psychometric function emerges. As before, there are various methods available 
to summarize such data.

3.1 Same-different Model with Constant Standard Deviation
First, a parametric method has been suggested by Schneider and Komlos 
(2008). These authors have assumed that subjects base their judgment on the 
difference ∆ = C – S between the internal representation of the comparison and 
the standard and respond with Rsame if | ∆ + e | < g  and otherwise with R different. 
The parameter g  denotes a constant threshold value and e the  constant error. 

Table 3.2 Exemplary outcome of a psychophysical experiment with an equality judgment task. 
The experiment uses s = 500 ms and nine comparison levels c1 ,...,c9 ranging from 
c1 = 300 ms to c9 = 700 ms. Row ni shows how often comparison level ci was repeated 
during the course of the experiment. The rows nsame,i and ndifferent,i give the number of 
Rsame and Rdifferent responses. The row fi contains the relative frequencies of the Rsame 
responses.

c1 c2 c3 c4 c5 c6 c7 c8 c9
300 350 400 450 500 550 600 650 700

ni 15 15 14 15 12 15 15 15 14
nsame,i 0 5 6 11 8 4 1 0 0
ndifferent,i 15 10 8 4 4 11 14 15 14
fi 0.00 0.33 0.43 0.73 0.67 0.27 0.07 0.00 0.00
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If one assumes that ∆ follows a normal distribution with mean mc = c – s + e 
and standard deviation s, then it can be shown that the probability of a Rsame 
response is given by

( ) ( ) ( )g e g e

s s
|  , .Φ Φ

 − − −  − − − − 
= −   

   
same

c s c s
P R c s

 
(11)

Again the maximum likelihood method can be used to obtain estimates 
of  g,  e,  and  s from the observed data. The supplementary Matlab script 
“MLESameDifferent.m” performs this analysis (see book’s GitHub repository). 
Applying this procedure to the data of Table 3.2 yields g  = 62.0 ms, Se = 7.1 ms, 
CI = [48.1, 75.9], e  = −42.9 ms, Se = 9.1 ms, CI = [−60.6, −25.1], and s  = 53.7 ms,  
Se = 7.6 ms, CI = [38.8, 68.7]. Figure 3.5 depicts the resulting psychometric 
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Figure 3.5 Relative frequency of responding with Rsame (i.e., judging c and s as equally long). 
The solid line shows the best fitting psychometric function. This model assumes that 
the standard deviation s  of the internal difference ∆ is constant.
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 function for these parameters. Note that the estimate of s  can be regarded as 
a sensitivity measure and thus might be reexpressed as DL = s  • z0.75. Likewise, 
the PSE can be obtained via PSE = s + e. For the present example, this yields  
PSE = 457.1 ms, Se = 9.1 ms, CI = [439.4, 474.9], and DL = 36.3 ms, Se = 5.1 ms,  
CI = [26.2, 46.3].

3.2 Same-different Model with Standard Deviation Dependent on 
Comparison Level

The model underlying Equation 11 implies a symmetrical bell-shaped psycho-
metric function. However, experiments employing the temporal generaliza-
tion method or the standard procedure of presenting s and c in fixed order 
in each trial, typically generate asymmetrical psychometric functions with a 
positive skew (Birngruber et al. 2014; Wearden et al. 1998; Wearden 1992). In 
order to account for this asymmetrical shape, one may as before (i.e., Pseudo- 
Gaussian Model) assume that the standard deviation s  in the preceding 
 Equation 11 increases with the comparison level c, i.e., sc = w • c (see Birngruber  
et al. 2014),

( ) ( ) ( )g e g e
| , .

· ·
 Φ Φ

 − − −  − − − − 
= −   

   
same

c s c s
P R c s

w c w c  
(12)

Figure 3.6 displays the estimated function for this model variant when it is 
applied to the example data in Table 3.2. The parameter estimates, derived by 
the supplementary Matlab script “MLESameDifferent2.m” (see book’s GitHub 
repository), are g  = 61.5 ms, Se = 7.1 ms, CI = [47.7, 75.3], e = −52.3 ms, Se = 9.0 
ms, CI = [−69.9, −34.6], and w = 0.118, Se = 0.016, CI = [0.086, 0.150]. Because 
the predicted shape of this psychometric function is asymmetrical and influ-
enced by the Weber fraction, it is difficult to properly define a measure of PSE. 
 However, similar to the previous definition, one may again compute PSE = s + e .  
Discrimination sensitivity is reflected in the parameter w, i.e., the Weber 
 fraction. Due to the asymmetry of the underlying psychometric function, this 
measure should be used to index sensitivity.

3.3 Waveform Moment Analysis
The preceding two procedures involved a parametric approach to the analy-
sis of data emerging from equality judgments. The Waveform Moment Analysis 
enables a non-parametric approach (Cacioppo & Dorfman 1987). Let fi be the 
observed relative frequency of a Rsame response associated with comparison 
level ci. In a first step, these frequencies are converted to a probability distribu-
tion pi, i = 1,…,k, by the following transformation,
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(13)

In a second step, the mean m and the standard deviation s  are computed for 
this “probability distribution”, that is,

m
1

  ·
=

= ∑ k
i ii

 p c
 

(14)

and 

( )s m 2
1

  · .
=

= −∑ k
i ii

 p c  (15)
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Figure 3.6 Relative frequency of responding with Rsame (i.e., judging c and s as equally long). 
The solid line shows the best fitting psychometric function. This model assumes that 
the standard deviation s  of the internal difference ∆ increases with c.
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The parameter m assesses the location of the psychometric function on the 
abscissa and thus can be interpreted as PSE, whereas the parameter s  cap-
tures the spread of this function and thus reflects discrimination performance 
with smaller values of s  indicating a higher level of discrimination sensitiv-
ity. Applications of the waveform moment analysis in temporal discrimination 
have been reported by Birngruber et al. (2014) and by Dyjas and Ulrich (2014).  
A Matlab script for performing this analysis (“WaveformMoment.m”) is avail-
able as supplementary material (see book’s GitHub repository). For the data in 
 Table 3.2, one obtains m = 456.1 ms, s  = 63.8 ms, and thus CE = −43.9 ms. This 
script also computes the standard error and confidence intervals for these pa-
rameters by the bootstrap method. For example, one obtains for m: Se = 8.7 ms, 
CI = [438.5, 472.5], for s : Se = 5.2 ms, CI = [52.6, 72.8], and for CE: Se = 8.7 ms, 
CI = [−61.5, −27.5] (see also Figure 3.7).
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Figure 3.7 Relative frequency of responding with Rsame (i.e., judging c and s as equally long). 
The dotted line indicates the pse estimate derived by means of the Waveform 
 Moment Analysis.
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4 Conclusions

In this chapter we have introduced and reviewed several psychophysical para-
digms and analytical procedures for determining discrimination sensitivity 
and perceived duration. For each procedure, we provided Matlab example 
codes for estimating the respective parameters that beginners to the field of 
timing research might find helpful (see book’s GitHub repository). We have 
discussed two major approaches differing in the type of judgment employed to 
assess timing performance, namely, comparative and equality judgments. The 
two major parameters of interest in this regard are PSE and DL. In experimen-
tal work, the absolute magnitude of these parameters is often of subordinate 
importance. Rather, the major interest lies in assessing differences in these 
parameters between experimental conditions. For example, an experimenter 
might be interested in whether or not the size of a visual stimulus affects per-
ceived duration (e.g., Mo & Michalski 1972; Rammsayer & Verner 2014). In this 
case, the PSE should be estimated for large and for small comparison stimuli, 
using the same standard in both conditions. When the different size condi-
tions are presented in random order within an experimental block, changes 
in PSE can be attributed to differences in the size of the comparison stimuli, 
since other influences on PSE, such as the time-order error, should affect PSE 
to an identical extent in both conditions. Therefore, a reminder design with 
fixed order of s and c is usually appropriate whenever an experimenter wants 
to investigate whether an experimental manipulation affects PSE.

It must be kept in mind, however, that perceived duration still can only be 
indirectly inferred from changes in the PSE, since the PSE reflects not only 
changes in perceived duration, but also decisional and response biases, and, 
therefore, this parameter should be cautiously interpreted in terms of judged 
duration rather than perceived duration. The use of a 2AFC task has the ad-
ditional advantage that one can isolate the effects of secondary experimental 
manipulations from the time-order error by analyzing the order-conditional 
psychometric functions. Also, unbiased estimates of DL can be achieved by 
assessing the slope of the order-conditional functions.

Traditionally, comparative judgments have been used most often to mea-
sure both DL and PSE. However, equality judgments may of course also be 
 employed, and might be especially useful to assess the robustness of experi-
mental effects. For example, consider that one is interested in whether an ex-
perimental manipulation influences perceived duration. If similar PSE effects 
can be observed for comparative and equality judgments, this might strength-
en the notion that the manipulation affects perceived duration rather than de-
cisional processes (e.g. Birngruber et al. 2014; Dyjas & Ulrich 2014).
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Supplementing this chapter, we provided basic Matlab scripts to illustrate 
the various psychophysical procedures for newcomers to the field of time 
perception (see book’s GitHub repository). It must be mentioned, however, 
that elaborated psychophysical toolboxes are available for data analysis (see 
 Table 3.3). We also refer the reader to comprehensive manuals on psychophysi-
cal methods for information about details of these toolboxes (Kingdom & Prins 
2010; Lu & Dosher 2014). For example, the toolbox developed by Wichmann 
and Hill (2001) also allows the estimation of lapses in designs with comparative 
judgments. The toolbox Palamedes described in Kingdom and Prins (2010) also 
includes Matlab scripts for adaptive psychophysical procedures. Finally, the 
Matlab script by Bausenhart et al. (2012) is recommended for fitting psycho-
metric functions conditional on stimulus order in 2AFC tasks.

In this chapter, we focused on psychophysical tools and procedures to ob-
tain and analyze psychometric functions. This is sometimes considered as the 
classical psychophysical approach. An alternative approach for characteriz-
ing discrimination performance is offered by Signal Detection Theory (sdt; 
Green & Swets, 1966). Interestingly, in the domain of time perception, the psy-
chophysical tools from sdt are much less often used than the classical tools 
described in this chapter. One major reason why time perception researchers 
usually prefer the classical tools is that sdt does not provide a parameter like 
the PSE that would allow to estimate judged duration. This is perhaps not sur-
prising since sdt was mainly developed to identify near-threshold stimuli, an 
issue that does not apply to time perception. Furthermore, we did not address 
duration scaling methods as temporal reproduction, production, or verbal es-
timation, which are also often used to investigate duration perception (e.g., 
Allan 1979; Bindra & Waksberg 1956; see also Chapter 4 of this book). However, 

Table 3.3 Overview of advanced toolboxes and functions for psychometric function fitting.

Name Website References Notes

Psychtoolbox www.psychtoolbox.org Brainard (1997), 
Pelli (1997)

See folder “psychometric”. Function fitting 
(e.g., cumulative normal, Weibull, Naka-
Rushton). For the cumulative normal and 
Weibull optimization toolbox is needed.

Palamedes www.palamedestoolbox 
.org

Kingdom & 
Prins (2010)

Fits several types of psychometric 
function also to multiple conditions at the 
same time, performs model comparison, 
and contains adaptive procedures.
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Name Website References Notes

MLE2AFC http://link.springer.com/
article/10.3758%2Fs13 
428-012-0207-z

Bausenhart et al. 
(2012)

Fits psychometric functions conditional 
on stimulus order accounting for lapses 
and response errors.

Psignifit psignifit.sourceforge.net Fruend, Haenel, 
& Wichmann 
(2011)

Performs maximum-likelihood fits, 
tests the quality of the fit, and provides 
confidence intervals on the parameters of 
the fitted functions.

uml http://hearlab.ss.uci.edu/
UML/uml.html

Shen, Dai, & 
Richards (2015)

Increases efficiency of data collection 
by estimating the parameters of the 
psychometric and optimizing stimulus 
sampling.

model free http://personalpages 
.manchester.ac.uk/staff/
d.h.foster/software 
-modelfree/latest/index 
.html

Zychaluk & 
Foster (2009)

Non-parametric local linear fitting.

pmetric www.psy.otago.ac.nz/
miller/Software.htm

Miller & Ulrich 
(2004)

WIN EXE that performs probit analysis 
and Spearman-Kärber method and uses 
bootstrapping for standard errors of 
parameter estimates (a Matlab wrapper 
function is available from the authors).

Psychophysica Available upon personal 
request to the authors

Watson & 
Solomon (1997)

Mathematica Notebooks, of which 
Psychometrica.nb fits and plots 
psychometric data.

quickpsy dlinares.org/quickpsy 
.html

Linares & López-
Moliner (2016)

R toolbox that fits and plots psychometric 
functions for multiple conditions.

glmm mixedpsychophysics 
.wordpress.com

Moscatelli, 
Mezzetti, & 
Lacquaniti 
(2012)

R toolbox to combine the analysis of the 
behavior at the level of single subject and 
population.

Table 3.3  Overview of advanced toolboxes and functions (cont.)

data analyses for these approaches are performed with common statistical 
measures as mean and standard deviation of the observed data.

In sum, we hope that the present chapter will direct beginners with little 
or no background in psychophysics to the most important paradigms and 
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psychophysical methods for assessing discrimination sensitivity and judged 
duration. The Matlab scripts provided as supplementary material should  
provide hands-on experience with these methods, although these scripts can-
not replace the elaborated toolboxes mentioned above.
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chapter 4

Methodological Issues in the Study of  
Prospective Timing

Giovanna Mioni

1 Introduction

The ability to accurately estimate the passage of time plays an important 
role in daily activities, from the sleep-wake cycle to speaking, to the ability to 
play musical instruments. We process time across a wide range of intervals, 
which operates over the range of milliseconds to the 24-h (Buhusi & Meck, 
2005; Fraisse, 1984; Grondin, 2010). As described by Block, Grondin, and Zakay 
(Chapter 2, this volume), the methods to investigate temporal processing can 
be distinguished in prospective and retrospective paradigms. In the prospec-
tive paradigm, participants know in advance that they will be asked to judge 
the duration of a time period. In the retrospective paradigm, participants do 
not know until the end of a time period that they will be asked to judge its 
duration. The way participants experience the passage of time and the vari-
ous  cognitive processes involved may nevertheless differ between the two 
paradigms. In the prospective paradigm, a person may intentionally encode 
temporal  information as an integral part of the experience of the time period. 
In the retrospective paradigm, a person may incidentally encode temporal in-
formation, and whatever information is relevant may be later retrieved from 
memory.

Traditionally, processing duration in the milliseconds-seconds range has 
been explained using the pacemaker-accumulator model (Gibbon, Church, & 
Meck, 1984; Triesman, 1963). The model postulates that duration judgments 
go through three stages: clock, memory, and decision stage. The clock stage 
is composed of a pacemaker that emits pulses gated to an accumulator. A 
switch is placed before the accumulator that controls the flow of pulses from 
the pacemaker to the accumulator. The memory stage is conceptualized as 
the storing system that accumulates pulses in working memory for compari-
son with the content of reference memory. The reference memory contains a 
long-term memory representation of pulses accumulated across prior trials. 
The final stage is the decision stage, in which the current duration is com-
pared with those stored in the reference memory. In Treisman’s model (1963), 
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the pacemaker directly receives inputs from an arousal center. As the arousal 
levels vary, the speed with which the pacemaker emits pulses change. An in-
creased level of arousal leads to an increase in the speed of the pacemaker. 
For a given duration period, if the pacemaker runs faster, more pulses reach 
the accumulator, and this duration is judged to be longer (Droit-Volet & Meck, 
2007). The Attentional-Gate Model (Block & Zakay, 1996; Zakay & Block, 1996) 
acknowledges the role of arousal in the pacemaker speed but it also adds an 
‘attentional gate’ that is influenced by the amount of attention allocated to 
time. If less attention is devoted to time, the gate narrows and allows fewer 
pulses to transfer to the accumulator.

These models provide interesting frameworks to test research hypotheses. 
But how do we test them? Which method is more appropriate for a specific 
question? In this view, the purpose of this chapter is to facilitate a future re-
searcher that approaches the study of timing to select the appropriate method 
with a specific focus on prospective timing. Here, the principal methods for 
studying time in the prospective paradigm will be described. Moreover, appli-
cations in clinical populations will be also described.

2 Methods for Studying Time in the Prospective Paradigm

Traditionally, researchers have utilized many different methods for investi-
gating time (Block, 1990; Grondin, 2008; 2010; Zakay 1990; 1993), however, this 
chapter, will focus only on the most classical ones used in the prospective para-
digm (i.e., time production, verbal estimation, and time reproduction).

Time production and verbal estimation tasks may be considered the two 
sides of the same coin and reflect similar underlying temporal processes and 
 mechanisms (Block, 1990). In the production task, a participant has to  produce 
an interval equal to an interval previously reported (i.e., “Produce 2 seconds”). 
In the verbal estimation task, after experiencing target duration, the  participant 
has to translate this subjective duration into clock units. An  adapted  version 
of experiments utilizing these tasks can be downloaded from the GitHub 
repository of this book. These two methods involve the  comparison of the 
 experienced duration with internal information concerning conventional du-
ration units, such as milliseconds and seconds (i.e., reference memory; Zakay, 
1990). In both cases, a translation from an objectively labeled duration to a 
 subjectively experienced duration (i.e., time production) and vice versa (i.e., 
verbal estimation) has to be completed. Time production and verbal estima-
tion are  appropriate ways for investigating individual differences related to the 
internal clock (its speed rate or variables influencing it), given that they best 
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reflect the speed or rate of functioning of an internal clock (Baudouin et al., 
2006; Glicksohn, & Hadad, 2011).

In the time reproduction tasks, participants are required to reproduce the 
duration of the temporal interval previously presented. The task is composed 
of two phases: the encoding and the reproduction phase. First, participants 
experience the target duration (i.e., encoding phase), and then they are asked 
to delimit a time interval (by pressing a designed key) equivalent to the tar-
get duration previously presented (i.e., reproduction phase; Mioni, Stablum, 
 McClintock, & Grondin, 2014c). An adapted version of such experiments can 
be downloaded from the GitHub repository of this book. Compared to the pro-
duction or verbal estimation tasks, a reproduction task is used less in the inves-
tigation of individual differences at the internal clock level. In fact, the speed 
rate of the internal clock is the same when experiencing the target duration 
and when reproducing it. This method, which relies on a  comparison of previ-
ously experienced temporal intervals, has the potential disadvantage that it 
might be mainly an index of the consistency of the subjective time experi-
ence,  providing no information about variation at the pacemaker rate. Even 
if the rate of  physiological and cognitive processes varies, the same rate will 
subserve a person’s experience of the target duration (encoding phase) and its 
 reproduction (reproduction phase). Thus, the reproduction method may  detect 
individual differences only if it is used in the framework of  psychophysical stud-
ies, in which duration is varied. In addition, judgments obtained by  using the 
 reproduction method (as well as the production method) may be confounded 
by extraneous variables such as the desire to terminate the  experiment sooner, 
impatience, or the inability to delay a response.

Researchers often use these three methods interchangeably without pro-
viding an explanation for the selection of a given method. It is important to 
remember that each method activates different timing-related processes and 
presents some specific perceptual errors. For example, participants tested with 
the verbal estimation method are prone to respond to the estimated duration 
using rounded numbers and data are often characterized by a great amount 
of variability compared to the other methods (Grondin, 2010; Zakay, 1990). 
Time reproduction is considered to be more accurate and reliable than time 
production and verbal estimation; however, it is less useful for investigating 
variations in the pacemaker rate. Time production and verbal estimation show 
more  inter-participant variability than time reproduction, but can be success-
fully used in studies where the rate of the internal pacemaker is manipulated.

Moreover, it is important to consider that each method requires cognitive 
resources to be processed. In fact, a reproduction task recruits attention and 
working memory to keep active the reference duration in order to  subsequently 
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reproduce it. Conversely, the production and verbal estimation tasks require 
other cognitive processes such as language processing and access to long-term 
memory (Block, Zakay, & Hancock, 1998). Time production and reproduc-
tion tasks require a motor action1 to produce and reproduce, respectively, the 
 temporal intervals after the presentation of a given target duration.

3 Scoring Methods

Data collected from the reproduction, production, and verbal estimation 
tasks may be scored in term of the: (1) Sd/Od ratio, (2) absolute discrepancy 
(|Sd-Od|), (3) absolute error (|Sd-Od|/Od), and (4) coefficient of variation (sd2/
Sd; Glicksohn & Hadad, 2012; Mioni et al., 2014). Sd represents the subjective 
duration expressed by the participants and Od represents the objective target 
 duration presented.

In computing the Sd/Od ratio, the time estimation is expressed in terms 
of proportion of physical duration and then the results are compared across 
 different temporal intervals. The absolute discrepancy (|Sd-Od|) reflects the 
magnitude of temporal error without giving any information regarding the 
duration (i.e., over- or under-estimation). The absolute error (|Sd-Od|/Od) may 
be the most sensitive of all indices and reflects a more generalized disruption 
of timing (Brown & Boltz, 2002). Finally, the coefficient of variance (cv) is an 
index of timing variability over a series of trials.

Interestingly, Glicksohn and Hadad (2012) tried to compare and contrast 
these different indices (with exclusion of cv) while studying sex difference in 
time perception. The authors only considered the time production task, but 
the results are a good starting point for extending the conclusions to the time 
reproduction and verbal estimation methods. Briefly, the results showed that 
when Sd/Od ratio is considered, female participants had a lower mean ratio 
in comparison to the male participants. In contrast, results reported using 
|Sd-Od| and |Sd-Od|/Od indices were seriously compromised by wide individ-
ual differences. Regarding the cv, it is an interesting index when comparing 
 clinical and healthy groups and when group and individual variability is  under 
investigation. With clinical population, higher temporal variability is a robust 
finding (Cester, Mioni, & Cornoldi, 2017; Jones & Jahanshahi, 2014; Mioni, 

1 Verbal speech can also be considered a motor action but here we refer as “motor action” 
only the context of physical motor action. It includes the preparation and the execution of a 
physical movement.

2 sd = standard deviation.
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Grondin, & Stablum, 2014a; Mioni, Stablum, Prunetti, & Grondin, 2016b) and 
it has been explained as a manifestation of difficulties in maintaining a stable 
 representation of duration. This difficulty is accentuated in patients due to 
 attentional, working memory, and executive dysfunction, and could be viewed 
as a manifestation of failure to fully attend to temporal information (Cester 
et al., 2017; Jones & Jahanshahi, 2014; Mioni, Grondin, & Stablum, 2014a; Mioni, 
Stablum, Prunetti, & Grondin, 2016b).

What are the benefits of one measure over the other? If multiple  temporal 
intervals are included within the same experimental design Sd/Od ratio should 
be used. This index also provides information regarding the direction of 
 duration (over- or under-estimation); if an index of amount of error is needed, 
the absolute discrepancy (|Sd-Od|) is more appropriate. The absolute error (|Sd-
Od|/Od) includes a mix of the other two indices reflecting a more generalized 
disruption of timing. The cv can be included if different groups (i.e., clinical 
vs. healthy or children vs. adults) are compared and it is an interesting measure 
of temporal variability.

4 Critical Considerations

Taking into consideration that each method activates different time-related 
processes (attentional or working memory resources) and activate different 
 representation of time (subjective or objective), one way to  select the appro-
priate method is to take into account other variables involved such as the tem-
poral interval, the motor component, cognitive load, and  cognitive  strategies as 
well as the group of participants under investigation. A  general  consideration 
is also that, given the tendency we have to round off time  estimates with 
 chronometric units, verbal estimations produce more  variability and are less 
accurate (greater discrepancy with respect to the standard duration) than time 
production and reproduction methods.

4.1 Temporal Range
Regarding the temporal range, a general tendency in timing literature, mainly 
in neuroscience researchers, is to emphasize a distinction between intervals 
above and below 1s, which is based on differential pharmacological effects 
(Rammsayer, 2008) and on patient studies with various cases of brain  damage 
(see Allman & Meck, 2012; Meck, 2005; Mioni, Grondin, & Stablum, 2014a; 
Piras et al., 2014). Moreover, researchers claim that the processing of smaller 
intervals is more sensory-based or benefits from some automatic processing, 
whereas the processing of longer intervals requires the support of cognitive 
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 resources (also see Lewis & Miall, 2003; Mioni, Stablum, & Grondin, 2014b). 
Even if this ‘1s’ transition period remains somewhat arbitrary, there is certainly 
some turning point on the time continuum. This is evident considering the 
benefit observed from adopting explicit counting strategy for processing long 
temporal intervals (around seconds range) with respect to brief temporal 
 interval (around milliseconds range) (Grondin, Meilleur-Wells, & Lachance, 
1999; Grondin, Ouellet, & Roussel, 2004; Mioni, Stablum, & Grondin, 2014b). 
 Indeed, there are empirical reasons to believe that this transition occurs around 
1200 ms. Using a time discrimination task,3 Mioni and colleagues (2014) tested 
participants with duration ranging from 400 to 1600 ms to investigate if tempo-
ral discrimination is influenced by the temporal range and/or by the context.4 
Results suggest that context influences time discrimination performance only 
when the temporal range under investigation is below 1300 ms and the tempo-
ral intervals varied within blocks. In the case of temporal intervals longer than 
1300 ms, participants presented a tendency to respond “long” independently of 
the procedure used. Researchers claimed that processing of smaller intervals 
is more sensory based, or benefits from some automatic processing, whereas 
the processing of longer intervals requires the support of cognitive resources 
(Hellström & Rammsayer, 2004; Lewis & Miall, 2003). This is also confirmed by 
results observed from patients’ studies with brain lesions (see later sections in 
this chapter and also Allman & Meck, 2012; Jones & Jahanshahi, 2014; Mioni, 
Grondin, & Stablum, 2014a; Piras et al., 2014).

Therefore, if the theoretical question involves exploring “pure” temporal 
abilities, without (or with reduced) influence of cognitive processes, brief tem-
poral intervals (below 1200–1300 ms) should be privileged.

4.2 Concurrent Secondary Task
In most cases, when performing temporal tasks, participants are also engaged 
in an additional exercise, called the “secondary task”. The aim of adding a 
 secondary task is to: (1) avoid counting strategies that are often used when 
experiencing long temporal intervals (see Section 4.3) and (2) understand 
the effects of cognitive load on duration judgments. As mentioned before, 
 attention plays a major role in prospective duration experience. The Attention-
al-Gate Model (Block & Zakay, 1996; Zakay & Block, 1996) proposes that the 

3 In a time discrimination task, participants are required to judge the relative duration of two 
time intervals presented successively and indicate whether the second stimulus is presented 
longer or shorter with respect to the first one.

4 The context effect here refers to the presentation of temporal intervals randomized within or 
across blocks (see also Jones and McAuley 2005).
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 experienced duration of a time period depends on the amount of information 
encoded during the temporal information processor and by a non-temporal 
information processor. Task demands (variation in the cognitive load) deter-
mine the way in which a person divides attention between the two processors. 
In fact, employing a concurrent secondary task gives the opportunity of testing 
the effects of variation of cognitive resources on temporal processing (Block, 
Hancock, & Zakay, 2010). It is thought that when a person is working on a dif-
ficult or attention-demanding task, time seems to pass quickly, but if a person 
is working on an easy or less attentional-demanding task, time seems to pass 
slowly. Therefore, time processing is adversely affected by the attentional or 
workload demands of any non-temporal (secondary) task (Brown, 1997, 2008; 
Brown & Boltz, 2002; Zakay & Block, 2004). It is possible to test the effects of 
the secondary task by: (1) manipulating the cognitive load of the secondary 
task by employing easy or more complex secondary tasks (Brown, 1985, 1997), 
or (2) varying the instruction by asking participants to focus attention mainly 
on the temporal task, or on the secondary task or both.

Generally, dual-task conditions (temporal task + secondary task) typically 
cause time judgments to become less accurate than single-task conditions in 
which participants judge time alone, but the effects also vary depending on 
the temporal task used. Verbal estimates and reproductions usually decrease 
(shorter temporal intervals estimated or reproduced) with greater processing 
demands during a time period, the reverse usually holds for time productions. 
During time reproduction tasks, temporal reproductions are longer if the tim-
ing task is defined as the primary task (attention fully focused on performing 
the timing task) than if it is defined as the secondary task (attention is focused 
on the secondary task).

4.3 Counting during Timing Tasks
Adding a secondary task during the temporal task, not only gives the opportu-
nity to test variations of attention and cognitive resources on time processing, 
but it also prevents the participants from adopting strategies, such as counting, 
during time processing (Grondin et al., 1999, 2004). It has been demonstrated 
that explicit counting improves temporal sensitivity in children as well as in 
adults (Clément & Rattat, 2006) and also in clinical groups (Perbal, Couillet, 
Azouvi, & Pouthas, 2003; Perbal, Couillet, Azouvi, & Pouthas, 2005). An ex-
planation of this counting advantage, rely on the knowledge that segmenting 
information into smaller parts helps the processing of this information. More-
over, counting reduces the contribution of memory to the overall variance in 
the timing process. This reduction is made possible by the remembering of 
the number counted rather than by remembering an interval representation. 
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However, letting participants use strategies during the timing task interferes 
with the meaning of testing “time”. Therefore, it is preferred to not allow par-
ticipants in adopting counting or any other strategy. One option is to employ 
brief temporal intervals in which counting is not advantageous (Grondin et 
al., 1999, 2004). Grondin (2004) showed, in a time discrimination task, ben-
efits from explicit counting at 1.6 s, but not at .8 s, when temporal intervals 
were marked by auditory as well as visual stimuli (see also Mioni, Stablum, & 
Grondin, 2014b; Mioni et al., 2016a). Rattat and Droit-Volet (2012) compared 
the effects of the three classic methods to avoid counting: (1) instructions not 
to count, (2) articulatory suppression, and (3) administration of an interfer-
ence task in temporal generalization, time bisection, and reproduction tasks 
with two duration ranges (i.e., 1–4 s and 2–8 s). Results showed that all three 
no-counting conditions prevented participants from counting, and interest-
ingly, the instructions not to count actually constituted the simplest and more 
efficient method of preventing counting in timing tasks. An alternative way to 
prevent participants from counting is to employ a motor task (i.e., continuous 
finger tapping). This method has the advantage to be employed independently 
of the modality used to present the temporal intervals. In some cases using 
a counting or articulatory suppression strategies with auditory stimuli might 
create and additional modality interference (Mioni et al., 2016a).

4.4 Methods for Producing and Reproducing Time
In the case of time production and reproduction, an additional issue concerns 
the motor action required to produce or reproduce temporal intervals. Par-
ticipants need to integrate their motor action in order to produce a precise 
 button press to process the temporal interval (Droit-Volet, 2010; Mioni et al., 
2014). Moreover, preparing and executing a motor action requires cogni-
tive  resources that might result in additional variance (Caldara et al., 2004). 
For instance, we can assume that people suffering from deficits in planning, 
preparation, and execution of motor movements could have poor temporal 
performance in a temporal reproduction task due to their motor-related defi-
cits rather than to their inability to estimate time (Bloxham, Dick, & Mooret, 
1987; Stuss et al., 1989). Mioni and colleagues (2014) compared the effects of 
three classical methods used to reproduce time with temporal intervals rang-
ing from 1 to 18 s: (1) pressing a designed key at the end of the reproduction, 
(2) pressing a designed key to start and stop the reproduction, and (3) con-
tinuous pressing a designed key to reproduce the duration. Results showed 
that temporal performance  depends on the method employed and on the 
interval range under investigation. In fact, the second method (i.e., pressing 
to start and end the reproduction) led to better accuracy (|Sd-Od|) than did 
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Methods 1 and 3 with  longer durations. However, when short durations were 
employed (i.e., 1 s), method 2 generated a higher absolute discrepancy (|Sd-
Od|),  indicating lower performance. Participants using method 1 showed good 
performance only when reproducing 1-s intervals. Of interest are the results 
obtained with cvs. Although participants using method 3 showed the lowest 
level of accuracy (|Sd-Od|) and under-reproduced temporal durations (|Sd/Od|) 
more than participants using method 1 or 2, method 3 led to the lowest cvs. 
Interestingly, pressing continuously to reproduce the duration, generated less 
variability than the other methods, in particular when participants reproduce 
longer durations.

4.5 Modality and Stimulus Type
Finally, when building a timing task the modality and the type of temporal in-
terval should be taken into account. The modality refers to the sensory modality 
used to present the temporal intervals (visual, auditory, or tactile). It is known 
that time perception is influenced by the sensory modality used for marking 
the time intervals (Grondin, 2003). Timing is more precise when stimuli are 
presented in the auditory rather than the visual modality (Grondin, 2003, 2010; 
Ulrich, Nitschkle, & Rammsayer, 2006), and this auditory  superiority might be 
due to the automaticity of temporal processing in audition.

Also, the way the temporal intervals are presented influence temporal per-
formance. Temporal intervals can be defined as “filled” or “empty”. An interval 
is defined “filled” when there is one given continuous signal between onset 
and offset; the signals’ onset and offset marks the interval’s beginning and end. 
An “empty” interval is a silent duration, that is, without stimulation, included 
within two sensory signals that mark the beginning and end of the interval. 
Generally, duration estimates lengthen if duration is filled as opposed to un-
filled. However, the differences between performance with filled and empty 
intervals are used depends on the type of markers, on the range of duration 
investigated, and the method employed (Grondin, 2008, 2010).

5 Prospective Timing in Clinical Populations

It is useful to bear in mind that there is no human clinical condition that 
can be defined solely as a disorder of timing and time perception per se. 
However, distortions in ones’ timing ability are present, to varying degrees, 
in many patient populations, and may or may not accompany differences in 
other  aspects of sensory processing, as well as developmental, cognitive, and 
 behavioural profiles. From a clinical perspective, examinations of the timing 

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



Mioni88

<UN>

 ability in  patients with certain psychiatric or behavioural disorders may help 
to  ameliorate understanding of the psychological experience of these disor-
ders and their potential remediation. In this regard, temporal distortion in 
Parkinson’s patients (pd) and traumatic brain injury patients (tbi) will be dis-
cussed. The selection of these two clinical groups concerns the presentation 
of two different  patterns of temporal dysfunction and will help in the under-
standing of the source of their temporal misperception. Readers who are more 
 interested in psychopathologies will also find a large number of time-related 
articles in the neuropsychological or psychiatric literature (Allman & Meck, 
2012; Meck, 2005):  Developmental findings in healthy (Droit-Volet, 2013) and 
clinical  children (Autism: Allman & Falter, 2015; Attention-deficit hyperactiv-
ity disorder: Hart, Radua, Mataix-Cols, & Rubia, 2012; Toplak, Dockstader, & 
Tannock, 2006), depressed (Thönes, & Oberfeld,2015) and anxious (Mioni et 
al., 2016a) patients; patients with schizophrenia (Thoenes & Oberfeld, 2017).

5.1 Timing in Parkinson’s Patients
pd is a movement disorder characterized by bradykinesia, tremor, rigid-
ity, and postural instability. Disease symptoms occur as a result of selective, 
 progressive, and chronic degeneration of the nigrostriatal and mesocortico-
limbic dopamine systems (Allman & Meck, 2012; Jankovic & Tolosa, 2007; 
Meck, 2005). Dysfunctions in dopamine transmission have also been identified 
as the main cause of temporal impairment in pd patients. Evidence suggests 
that pd patients show dysfunctions in time perception in various temporal 
tasks (Jones & Jahanshahi, 2014).

pd patients have been tested due to their basal ganglia dysfunction and 
dopaminergic alteration. Dopaminergic antagonists produce a deceleration 
of the subjective clock speed (Buhusi & Meck, 2005). These results tradition-
ally elected the dopaminergic system and the basal ganglia as a “house” of the 
pacemaker-clock system. However, the pathophysiology of pd is complex and 
evolves in the course of the illness. The basal ganglia seem to be particularly 
involved in timekeeping functions, and a strict connection is hypothesized 
 between the basal ganglia and cortical structures supporting conscious rep-
resentation and memory for time. The frontal cortex, mainly the dorsolateral 
prefrontal cortex, has an established role in a range of cognitive processes, such 
as working memory and decision-making, which the clock model  proposes 
as necessary for efficient interval timing. Therefore, it can be difficult in pd 
 patients to tease apart whether the timing difficulties are driven by a core tim-
ing dysfunction, or by the disruption of general cognitive processes.

When investigating perceptual timing in patients with movement disorders 
the most effective tasks are those not involving reaction time and  responses 
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based on motor components. Time discrimination and time bisection tasks fit 
these criteria; however, studies have been conducted also with time  production, 
verbal estimation, and time reproduction tasks. Despite the motor limitation 
(that can be controlled including a simple motor task), results from studies 
conducted with time reproduction tasks showed both increased and reduced 
variability and over- and under-reproduction in pd patients compared to 
 controls. It is possible that some of the contradictory findings  reported in the 
literature on timing and time perception with pd patients may be explained by 
differences in temporal range and stimuli modality.

An interesting phenomenon that is often observed is the “migration effect” 
(Malapani, Deweer, & Gibbon, 2002; Malapani et al., 1998). When temporal 
 intervals in different temporal ranges are used within the same block, short in-
tervals are over-reproduced and long intervals are under-reproduced (see also 
the Vierordt’s law; Lejeune, & Wearden, 2009). What is the source of this effect 
in pd patients? Malapani et al. (2002) suggested that the memory for learned 
durations is the source of the temporal impairment rather than variation at 
the clock level.

Some other critical factors that have to be taken into account when testing 
pd patients is the effect of medication and the role of cognitive factors. Regard-
ing the first point, Jones and Jahanshahi (2014) reported that half of the studies 
that reported a direct comparison between “ON” and “OFF” medication indi-
cated a beneficial effect of medication on perceptual timing. However, some 
studies have also reported the opposite findings, reflecting a negative  effect of 
dopaminergic remediation of relatively preserved basal ganglia  circuits. More-
over, patients can vary in severity and duration of the illness, which are factors 
that can mediate the medication impact (Merchant et al., 2008).

Finally, regarding the involvement of cognitive function on temporal pro-
cessing, this leads to an important area of debate. Does the temporal dysfunc-
tion observed in pd patients reflect a dysfunction in critical timing regions or it 
is mediated by global cognitive impairment? Traditionally, the way for  testing 
the extent to which cognitive impairment is correlated with  timing perfor-
mance is to compare performance in neuropsychological and  temporal tasks. 
Even though most studies report a complete  neuropsychological  evaluation 
(Jones & Jahanshahi, 2014), very few studies run correlational analyses. 
Jones et al. (2008) conducted a factor analysis and reported a  common  factor 
 between measures of attention and time production that was distinct from 
time  reproduction. However, Merchant et al. (2008) found that  performance 
on a range of cognitive tasks did not discriminate those with pd who did well 
or poorly on a range or motor and perceptual timing tasks.  Importantly, in all 
these studies, the group of pd patients was treated as a whole sample,  however, 
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different levels of impairment exist at the individual level. A different approach 
was followed by Mioni et al. (2015, 2017). That is, by using Litvan’s criteria (Lit-
van et al., 2012), patients with a diagnosis of pd who failed at least two tasks 
(below two standard deviations) in the same domain or in different domains 
were defined as pd with mild cognitive impairment (mci) and tested separate-
ly from pd patients without mci. Results showed that pd-mci patients were 
less accurate and more variable with respect to PD-no-MCI and controls that 
demonstrated similar temporal abilities. It is, therefore, evident, that the level 
of cognitive function can influence temporal performance in pd patients, but 
this does not preclude that “pure” clock  dysfunction is also present.

5.2 Time in Traumatic Brain Injury Patients
Neuropathological evidence suggest a marked heterogeneity of injuries across 
tbi patients. However, it is apparent that diffuse axonal injury is common, and 
that damage occurs most frequently in the frontal and temporal lobes. Tempo-
ral impairments in patients with tbi are expected considering the disruption 
of cognitive function involved in temporal processing (Mioni, Grondin, & Sta-
blum, 2014a; Piras et al., 2014).

Reviewing the studies conducted to investigate temporal dysfunction in tbi 
patients (Mioni, Grondin, & Stablum, 2014a), four used a time  reproduction 
task (Meyers & Levin, 1992; Mioni, Stablum, McClintock, & Cantagallo, 2012; 
Mioni, Mattalia, & Stablum, 2013a; Perbal et al., 2003), three a verbal estima-
tion task (Anderson & Schmitter-Edgecombe, 2011; Meyers & Levin, 1992; 
 Schmitter-Edgecombe & Rueda, 2008), two a time production task (Mioni, 
Mattalia, & Stablum, 2013a; Perbal et al., 2003), and two a time discrimination 
task5 (Mioni, Mattalia, & Stablum, 2013a; Mioni, Stablum, & Cantagallo, 2013b).

The studies conducted with the time reproduction task showed that tbi 
 patients were as accurate as controls (Sd/Od ratio) and showed higher variabil-
ity (cv) in their timing judgments, indicating dysfunction in maintaining a sta-
ble representation of temporal intervals. In the study conducted by Perbal et 
al. (2003), participants were also asked to perform a secondary (non- temporal) 
task together with the time reproduction task. Similar under-reproduction was 
observed in tbi patients and controls in both simple (time reproduction only) 
and concurrent (time reproduction + non-temporal task) conditions, in par-
ticular under the latter condition.

5 In time discrimination tasks, participants are required to compare the relative duration of 
two intervals that are sequentially presented (standard-comparison) and then judge, which 
one was longer or shorter. Since this chapter does not cover this method, please refer to the 
original papers for a detailed presentation of the results (Mioni et al. 2013a, 2013b).
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The studies conducted with a time production task confirmed and extend-
ed the results obtained with the time reproduction task. Again, tbi patients 
were as accurate as controls (Sd/Od ratio) and showed higher temporal vari-
ability  (cv; Mioni et al., 2013b; Perbal et al., 2003). Regarding the impact of 
a  concurrent non-temporal task, no effect was found (time production only 
vs.  time production + non-temporal task) and this finding applies to both 
groups (i.e.,  tbi and controls). tbis and controls showed the same perfor-
mances (Sd/Od ratio and cv) in both simple and concurrent conditions (Perbal 
et al., 2003).

Three studies were conducted with a verbal estimation task but perfor-
mance was only analysed in two of them. Indeed, in Meyers and Levin’s (1992) 
study, performance at a verbal estimation task was not analysed due to the 
extreme variability noted in the tbi sample. Schmitter-Edgecombe and Rueda 
(2008), as well as Anderson and Schmitter-Edgecombe (2011), reported lower 
accuracy (|Sd-Od|), higher under-estimation (Sd/Od ratio), and more variability 
(i.e., cv) in tbi patients than controls.

In brief, tbi patients and controls showed similar performances (|Sd-Od| or 
Sd/Od ratio) when time reproduction and time production tasks are employed. 
However, tbi patients performed less accurately than controls when verbal 
estimation was used. Moreover, in all studies, variability is higher with tbi pa-
tients than with controls.

In sum, the revision of the existing literature investigating time percep-
tion in tbi patients showed that temporal dysfunctions in tbi patients were 
 related to deficits in cognitive function involved in temporal processing such 
as working memory, attention, and executive function rather than an impair-
ment in time estimation per se. In fact, temporal dysfunctions were observed 
when the tasks employed required high cognitive functions to be performed 
(Mioni, Mattalia, & Stablum, 2013a; Mioni, Stablum, & Cantagallo, 2013b). The 
consistent higher temporal variability observed is a sign of impaired frontally 
mediated cognitive functions that affect temporal representation.

6 Conclusions and Practical Considerations

This chapter provided a general overview of the typical perceptual timing tasks 
used under the prospective paradigm. The tasks that have been described were 
the time production, verbal estimation, and time reproduction tasks. Each of 
these tasks highlights different temporal characteristics and requires different 
cognitive processes. Briefly, time production and verbal estimation tasks are 
suitable methods for investigating individual differences in the speed rate of 
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the internal clock, while time reproduction is useful if it is used in the frame-
work of psychophysical studies where duration is varied.

Different factors should be taken into account when selecting a timing 
task. First of all, the temporal range is critical. Brief temporal ranges should 
be  preferred to reduce additional cognitive factors that are required when 
performing long temporal intervals (i.e., attention and working memory). 
 Moreover, a motor component can alter temporal performance in time pro-
duction and time reproduction, when brief temporal intervals are employed. If 
longer temporal intervals are used (around 1.2 s), participants have the  natural 
tendency to use strategies (i.e., counting) during the temporal task. Segment-
ing a long temporal interval using counting improves temporal performance, 
however in this case the results can be less interpreted as an index of  temporal 
ability and more as an index of counting. To prevent participants from count-
ing, various methodologies can be used, and simply asking participants not to 
count has been demonstrated as a good method to eliminate counting. Finally, 
this chapter briefly presented a review of the main findings observed in timing 
literature when pd and tbi patients are tested with some specific clinical and 
methodological suggestions.
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chapter 5

Duration Bisection: A User’s Guide

Trevor B. Penney and Xiaoqin Cheng

1 Introduction

Duration bisection is a prospective, perceptual timing task. Prospective be-
cause the participant is aware in advance that duration judgments will be re-
quired (Chapters 2 and 4, this volume) and perceptual because the participant 
is instructed to classify the presentation durations of probe stimuli relative to 
a standard or standards rather than to produce or reproduce a given duration. 
The major advantage of prospective timing tasks is that multiple trials can be 
conducted during a test session, thereby allowing robust estimates of timing 
behavior and, equally important, psychophysical analysis. A major advantage 
of duration perception tasks is that the motor response does not contribute to 
the estimate of timing accuracy or variability.

Duration bisection has seen extensive use since its introduction in modern 
form by Church and Deluty (1977). Although originally applied to  non- human 
animals (i.e., rats), following early work by Allan and Gibbon (1991) and 
Wearden (1991), the task has proven popular for use in human studies. Indeed, 
since 1991 more than 90 articles reporting data from the duration bisection task 
have been published (see Appendix – Table 5.1). These data come from partici-
pants ranging in age from the very young (e.g., Droit-Volet & Wearden, 2001) 
to the very old (e.g., Lustig & Meck, 2011), and although the preponderance of 
work has been in samples of healthy individuals, typically college students, 
numerous studies have applied the bisection task to clinical samples (e.g., Mel-
gire et al., 2005; Nichelli et al., 1996). In some cases, the task has been used 
to address fundamental questions about the perceptual, cognitive, and neural 
mechanisms that underlie interval timing (e.g., How does subjective time scale 
with objective time?; Church & Deluty, 1977), whereas other studies have used 
the task to elucidate whether and how interval timing interacts with other per-
ceptual and cognitive processes (e.g., Droit-Volet, Fayolle, & Gil, 2016).

In this chapter, we provide a brief overview of the duration bisection task, 
describe the analysis approaches used for duration bisection data, and con-
clude the chapter with some guidelines for use. Basic stimulus presentation 
programs and analysis code, written in matlab and R, are available at the 
book’s GitHub repository.
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2 Duration Bisection – Origins

In an early study of temporal discrimination in non-human animals (Cowles & 
Finan, 1941), rats received reinforcement for running down one alleyway of a Y 
shaped discrimination box after a 10 s restraint period and the other alleyway 
after 30 s of restraint. After 600 trials of training, six of nine animals showed 
evidence of having learned the temporal discrimination. Although this experi-
ment demonstrated that (some) rats could learn to discriminate the durations, 
it did not speak to the limits of temporal discrimination, nor to the processes 
underlying it. Later the same decade, Heron (1949) used a similar temporal 
restraint design, but a different maze layout, in an “attempt to determine the dif-
ferential limen for temporal discrimination”. Eleven rats were initially trained to 
discriminate 5 and 45 s and then progressed to more difficult discriminations. 
Eight rats learned to discriminate 5 vs. 35 s and 5 vs. 25 s, but only one learned 
to discriminate 5 vs. 10 s.

Approximately twenty years later, Stubbs (1968) reported a procedure that 
examined timing of a range of durations during a single test session. Specifi-
cally, he reinforced pigeons for responding on one keylight for durations from 
1 to 5 s and a second keylight for durations from 6 to 10 s (Experiment 1). Sub-
sequently, Stubbs (1976) developed a task that measured the bird’s subjective 
experience of time by not reinforcing intermediate durations. Pigeons con-
trolled the illumination color (green or red) of a reinforcement key by pecking 
on a separate changeover key. Whether pecking on the reinforcement key was 
rewarded depended on the key’s color and how long it had been illuminated. 
For example, in one condition, reinforcement followed pecks on the green key 
after 2 to 4 s of illumination and pecks on the red key after 60 to 64 s of illumi-
nation.  However, pecking during the period from 4 to 60 s was not reinforced. 
The critical measure of interest was when pigeons switched the color of the 
 reinforcement key from green to red by pecking on the changeover key, thereby 
changing the response from the short interval key (green) to the long interval 
key (red).

3 Duration Bisection – Modern Form

Church and Deluty (1977) reported the first use of the duration bisection task 
in what is now its most common form. In an initial training phase, rats re-
ceived reinforcement for pressing one lever following presentation of a short 
duration stimulus (short anchor) and a second lever following presentation 
of a long duration stimulus (long anchor). In the test phase, these short and 
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long anchor durations were presented and correct responses reinforced, but 
unreinforced durations intermediate to the short and long anchors were also 
presented. Hence, classification of the intermediate durations provided infor-
mation about the animal’s subjective judgment of time.

The human version of duration bisection is similar. In the test phase, the 
anchor durations and intermediate durations are presented, but feedback is 
provided for the anchor durations only, which ensures that the task measures 
subjective perception of duration. However, the training/anchor learning 
phase is not as extensive for human participants. It usually involves a relatively 
limited number of presentations of each of the anchor durations only (i.e., 4 to 
10), with each presentation followed by feedback indicating whether it was the 
long or short anchor, and a single training session prior to testing rather than 
multiple sessions.

It is worth noting that there is a variant of duration bisection in which 
 participants are not explicitly trained on the anchor durations. Rather, in this 
partition version of the duration bisection task for humans (e.g., Droit-Volet &  
Rattat, 2007; Wearden & Ferrara, 1995; Wiener et al., 2014) participants are 
merely asked to classify each presented stimulus as short or long. Importantly, 
after the participants have had some experience with the range of probe du-
rations, the response functions calculated from subsequent trials in the test 
session are sigmoidal. This indicates that participants are able to categorize 
the probe durations appropriately in the absence of explicit training with the 
anchor durations.

In animal studies, the anchor durations typically comprise 50% of the trials 
(25% each for short and long), whereas in human studies all durations, wheth-
er anchor or intermediate, are usually presented an equal number of times. 
 Notably, the presentation probability of the anchor durations does  affect 
 stimulus classification (Akdoğan & Balcı, 2016). For example, when fewer short 
than long anchor stimuli are presented in the test phase, mice are more like-
ly to classify a given probe duration as long as compared to when the short 
and long anchors are presented with equal frequency during the test  session. 
 Moreover, in animal work, correct classification of the anchor durations in 
the test phase  is normally reinforced on less than 100% of the correct trials. 
This ensures that animals continue to respond on the intermediate probe 
 trials, which are never reinforced, rather than learning to discriminate rein-
forced anchor durations from unreinforced probe durations (i.e., learning not 
to respond on the intermediate probes as they do not lead to reward). Indeed, 
with   extensive  training and 100% reinforcement on the anchor  durations, 
rats learn not to respond following intermediate probe durations (Brown et al.,  
2011).
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In contrast, human participants are usually given feedback on all an-
chor duration trials, unless the researcher has a specific reason for omitting 
 feedback (e.g., Wiener et al., 2014). Human participants are also frequently told 
to  consider the classification task as indicating whether the probe duration 
is “closer to” short or long judgment rather than as an endorsement that the 
probe duration is exactly the same as the short or long exemplar.

Neither human nor non-human animal participants are normally reinforced 
for classifications of the intermediate probe durations (but see Kim et al.,  
2013, and Ward et al., 2009, for exceptions). Consequently, the classification is a 
measure of the participant’s subjective judgment of time rather than a test of 
whether the participant remembers being reinforced for making a  particular 
response for a particular duration.

4 Data Presentation

Data from the duration bisection task are most often plotted as the probability 
with which a given test duration is classified as ‘long’, although in some early 
papers the ‘short’ classification probability was plotted (e.g., Gibbon, 1981). If 
the participant has learned the temporal discrimination, the probability of a 
long response should be zero or close to zero for the short anchor duration and 
100% or close to 100% for the long anchor duration. Due to variance in timing, 
classification of the intermediate probes as ‘long’ increases relatively smooth-
ly with increasing duration (see Figure 5.1). That is to say, the  psychometric 
 response function usually has the form of a sigmoidal function rather than 
a step function. Absent timing variation, a step function should manifest be-
cause all durations below some magnitude would be consistently classified as 
short on all trials and all durations above that magnitude would be classified 
as long on all trials.

The parameters of interest that can be derived from the psychometric 
response function include the bisection point (bp; also known as the Point 
of Subjective Equality or pse), the difference limen (dl), and the Weber 
 fraction (wf; also known as the Weber ratio or wr). The bp is the duration 
value at which the participant is equally likely to classify the stimulus (i.e., 
test duration) as short or long. The bp can be determined in a variety of 
ways from the response function. For example, Church & Deluty (1977) fitted 
a straight line to the three most central durations in the range presented to  
participants to  determine the duration corresponding to 50% long classi-
fications.  Fitting a  mathematical function (e.g., sigmoidal, pseudo-logistic, 
Weibull) and  determining the bp from that fitted function is also a common 
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approach. When the psychometric response functions are smooth, the method 
of  determination of the bp is unlikely to greatly influence the values obtained 
(Figure 5.2). The maximum smoothness or resolution of the response function 
generated for individual participants is a consequence of the number of trials 
presented at each probe duration (i.e., 10 trials for each probe duration equals 
p(‘long’) steps of .1). Hence, ensuring presentation of an adequate number of 
probe trials is important, but it is also important to ensure that the experimen-
tal session is not so long that performance declines due to participant fatigue 
and boredom.

The steepness of the psychometric response function reflects temporal sen-
sitivity and can be characterized by the difference limen (dl), with smaller 
dls (steeper slopes) indicating greater temporal sensitivity. The dl is usually 
defined as one half of the difference between the duration corresponding to 
a p(‘long’) of 75% and the duration corresponding to a p(‘long’) of 25%. The 
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Figure 5.� Mean proportion of ‘long’ responses by a single human participant trained on an-
chor durations of .8 s and 3.2 s. The psychometric response function shows the typical 
sigmoidal form obtained with the duration bisection task.
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75% and 25% p(‘long’) durations also can be determined in several different 
ways. Church and Deluty (1977) used the same fitted line they used to deter-
mine the bp (see above), but other fitted functions are equally appropriate. 
The wf, which is obtained by dividing the dl by the bp, provides a measure of 
temporal sensitivity corrected for the magnitude of the durations used in that 
experimental condition. If Weber’s Law holds for time, then the wf should be 
constant for different anchor duration pairs (Gibbon, 1981) and the psycho-
metric response functions should superimpose (see Figure 5.3).

5 Location of the Bisection Point (bp)

The location of the bp is important theoretically because it constrains the 
models that can account for bisection performance. For example, whether 
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Figure 5.� Fits of pseudo-logistic, sigmoidal, and Weibull functions to duration bisection  
data of a single subject.

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



Penney and Cheng�04

<UN>

bisection occurs at the geometric mean (gm) or the arithmetic mean (am) 
has been interpreted as an indicator of whether the temporal scale is linear or 
logarithmic and whether the response decision rule operates on ratios or dif-
ferences between the currently elapsing time on a trial and memory represen-
tations of previously reinforced durations. Church and Deluty (1977) presented 
probe durations at the gm, the harmonic mean, and the am of the anchor du-
rations with the goal of determining the location of classification indifference 
in rats. They found that across four pairs of short (S)/ long (L) durations (i.e., 
1s:4s, 2s:8s, 3s:12s, 4s:16s), the bp was closer to the gm than either the am or the 
harmonic mean. The authors interpreted this as indicating that the underlying 
temporal scale was logarithmic, rather than linear. The basic idea being that 
if animals select a response lever based on the arithmetic difference between 
the current duration and the memory representations of the S and L dura-
tions, then the midpoint will be at the gm when the time scale is  logarithmic. 
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Figure 5.3 Group mean psychometric response functions from three long (L)/short (S) anchor 
duration ratios following normalization by the group function bisection point. Data 
replotted from the ‘No Distracter’ condition in Experiment 2 of Penney, Yim, and Ng 
(2014).
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 However, they also noted that a linear timescale with a different decision rule 
could result in bisection at the gm rather than the am.

Gibbon (1981) provided a detailed analysis of the combination of timescale 
and decision processes that can account for the form and location of the du-
ration bisection psychometric function. He noted that Weber’s Law for time 
requires that “the discriminability of two durations remains constant at constant 
ratios of these durations, regardless of their absolute durations” and that “the 
subjective “middle” between two time values appears to lie at the geometric mean 
of these values” (p. 59). Accordingly, different probe durations, T1 and T2, from 
two different test conditions will be classified ‘short’ with the same probability 
when the T/S ratio is equivalent in both conditions and the S/L ratio is  constant. 
For example, if the ‘short’ report probability is .75 after 3 s has elapsed when S 
is 2 s and L is 8 s, then we would expect the short report probability to be .75 
at 6 s when the S and L durations are 4 and 16 s, respectively. Indeed, Church 
and Deluty (1977) found that the Weber Fraction was constant across anchor 
duration conditions that had gms of 2, 4, 6, and 8 s, indicating that timing 
variability scaled with the duration being timed. Although Gibbon’s analyses 
ruled out certain combinations of timescale and decision process (e.g., Pois-
son timing with a likelihood decision rule and Scalar timing with a likelihood 
decision rule), they did not allow him to discriminate among log timing with a 
likelihood decision rule, log timing with a similarity decision rule, and Scalar 
timing with a similarity decision rule. That said, subsequent work by Gibbon 
and colleagues generally modeled duration bisection as a Scalar timing pro-
cess with a similarity decision rule.

Although early experiments in rats and pigeons (e.g., Church & Deluty, 1977; 
Platt & Davis, 1983), as well as some work in humans (Allan & Gibbon, 1991), in-
dicated that the bp was closer to the gm than the am, this result has not been 
found consistently for human participants. Indeed, bisection at or close to the 
am of the short and long anchor durations (e.g., Wearden, 1991; Wearden & 
Ferrara, 1995) is found as frequently, if not more frequently, than bisection at or 
close to the gm. It is clear from the literature that various experimental design 
factors, such as stimulus spacing (Wearden & Ferrara, 1995) and stimulus range 
(Wearden & Ferrara, 1996), have a substantial effect on the location of the bp. 
Indeed, studies reporting gm bisection in humans have typically used loga-
rithmic spacing of probe stimuli whereas those reporting am bisection have 
typically used linear spacing. Indeed, Allan (2002) advised that because the bp 
was susceptible to bias due to paradigm features such as stimulus spacing, L/S 
ratio, and duration range, it should not be interpreted as indicating the time 
value that is equally confused with the S and L anchor durations. We briefly 
describe the effects of stimulus spacing and stimulus range below.
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5.1 Stimulus Spacing
In rats, Church and Deluty (1977) failed to obtain evidence for an effect of stim-
ulus spacing on the location of the bp with L/S pairs of 4:1. However, Raslear 
(1983, 1985), also with rats, found a significantly larger bp for linear as com-
pared to logarithmic spacing with an L/S ratio of 100:1, but no spacing effects 
for less extreme L/S ratios.

Although Allan and Gibbon (1991) found the bp was closer to the gm than 
the am for both arithmetic (Exp. 1) and logarithmic spacing (Exp. 2) condi-
tions in humans, the same year Wearden (1991) reported duration bisection at 
the am for conditions using 200 vs. 800 ms and 100 vs. 900 ms anchor duration 
pairs. Subsequently, Wearden and Ferrara (1995) explicitly compared logarith-
mic and linear spacing. They found leftward shifts in the response functions 
for logarithmic as compared to linear spacing at both duration ranges tested 
(Exp. 1: 200 vs. 800 ms and 100 vs. 900 ms). In a second experiment, they used 
unequal arithmetic spacing, such that in some conditions there was a larger 
number of shorter than longer durations. Response functions in these condi-
tions were shifted to the left compared to those conditions with a larger num-
ber of longer than shorter durations.

Wearden, Rogers, and Thomas (1997) used longer durations (1 vs. 4 s and 2 vs. 
8 s), but included a concurrent task to prevent counting (verbally shadowing 
visually presented digits). Response functions appeared leftward shifted in the 
logarithmic spacing condition as compared to linear spacing, but there was no 
statistical difference between the bps. They also examined L/S ratios of 2:1 and 
5:1, but found little effect on the location of the bp, although the bp was closer 
to the am than the gm in all conditions. Interestingly, participants showed 
greater timing sensitivity for the more difficult L/S ratios (see Kopec & Brody, 
2010, for a brief review).

Wearden and Ferrara (1995) proposed that stimulus spacing affects the loca-
tion of the bp because participants calculate the midpoint of the distribution 
of probe durations presented in the test phase and decide whether to respond 
short or long based on the magnitude of the current duration relative to the 
midpoint. The midpoint of a logarithmically spaced S/L range will be smaller 
than the midpoint of a linearly spaced S/L range. For example, the midpoint 
of a log spaced 2:8 s range (i.e., 2, 2.52, 3.17, 4.00, 5.04, 6.35, and 8.00) is 4.44, 
whereas the midpoint of a linearly spaced 2:8 s range (i.e., 2, 3, 4, 5, 6, 7, 8) is 
5.00. Hence, the psychometric response functions will differ between these two 
spacing conditions. Although this explanation accounts well for some spacing 
effects, it doesn’t provide an explanation for all findings. As noted above, the 
L/S ratio impacts the presence or absence of stimulus spacing effects (Raslear, 
1983, 1985). Indeed, task difficulty, indicated by L/S ratio, was greater in Allan 
and Gibbon (1991) than in Wearden (1991).
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5.2 Stimulus Range
The presence of spacing effects for some L/S ratios, but not others, suggests 
that the stimulus range (i.e., ratio of the short and long anchor durations) the 
participant experiences also impacts the location of the bp. Wearden and Fer-
rara (1996) examined stimulus range effects in humans using the partition 
method of bisection (see above). For three groups of participants, they exam-
ined L/S ratios of 5:1 and 2:1 in situations where the difference between the S 
and L values was kept constant at 400 ms. For another three groups the L/S 
ratio was kept constant at 4:1, but the difference between short and long values 
ranged from 300 to 600 ms. They obtained bisection at the am for all groups 
except the 2:1 group, which showed gm bisection. Experiment 2 of the same 
study explored linear and logarithmic spacing, L/S ratios of 2:1 (450 vs. 900 ms) 
and 19:1 (50 vs. 900 ms), and explicitly trained the participants on the S and 
L anchor durations instead of using the partition method. They obtained an 
effect of stimulus spacing for the large 19:1 ratio, but not the 2:1 ratio, and a 
bp close to the gm for the 2:1 ratio. Hence, they concluded that gm bisection 
manifests for small L/S ratios and that linear versus logarithmic spacing ef-
fects manifest only when L/S ratios are large. They also showed that Wearden’s 
modified difference model (Wearden, 1991) accounted for the obtained data 
patterns reasonably well. Unfortunately from the perspective of finding gen-
erally applicable models, it does not account for the stimulus spacing effects 
described in the preceding section.

With a view toward developing a single model that could account for the 
idiosyncrasies found in the duration bisection literature, including effects of 
stimulus spacing and stimulus range such as those described above, Kopec 
and Brody (2010) analyzed data from 148 experiments reported in 18  different 
 studies of human duration bisection. They developed a two-step decision 
 model in which the participant first determines whether the probe dura-
tion is  one of the anchor durations and, if not, conducts the second step in 
which the  relative distance of the probe duration from the anchor durations 
is compared.

5.3 Timing Precision
As noted above, the dl and wf provide measures of temporal sensitivity in 
the duration bisection task. The steeper the participant’s response function, 
the more precise (i.e., less variable) the participant’s timing on a trial-to-trial 
basis. Several studies in human and non-human animals have shown more 
precise timing performance with more difficult L/S ratios (e.g., Church & De-
luty, 1977). However, when the L/S ratios are extremely difficult (e.g., 3 vs. 3.6 s), 
timing anomalies may arise. For example, Penney et al. (2008) found reversals 
in the psychometric response functions, meaning that participants classified a  
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duration close to the gm as shorter more often than a probe duration that was 
more distant from the gm and closer to the S anchor value. This pattern held in 
humans, mice, and pigeons, although the difficulty level eliciting the anomaly 
differed among species.

6 Analysis of Duration Bisection Data

6.1 Atheoretical
Data from the duration bisection task are often analyzed in what could be 
termed an atheoretical manner. The simplest approach is to compare the prob-
ability of a long classification, p(‘long’), at each test phase duration between 
conditions. In other words, probe duration and experimental condition can be 
treated as factors in an anova. This analytic approach can reveal whether dura-
tion classification differs between conditions, but it has several shortcomings.

First, even when there are substantial condition effects at intermediate 
probe durations the stimulus classifications at or very close to the anchor du-
rations may not be different. Both human and non-human subjects often clas-
sify the shortest and longest stimuli as ‘short’ and ‘long’ with perfect, or near 
perfect, accuracy (e.g., Droit-Volet & Wearden, 2001; Meck, 1983). Given a main 
effect of Condition collapses across the test durations, a condition difference 
among intermediate probe durations could be concealed. Although a Condi-
tion difference may manifest as a Duration x Condition interaction, detecting 
a significant interaction often requires greater statistical power as compared to 
detecting a significant main effect.

Second, in the event a Duration x Condition interaction manifests, one 
would typically then test the effect of Condition at each level of test duration. 
This may result in significant differences at some intermediate test durations, 
but not others, particularly when one corrects for multiple comparisons. How-
ever, inconsistent effects at the intermediate probe durations may be difficult 
to interpret in a meaningful manner.

Consequently, rather than analyzing p(‘long’) values, researchers often ana-
lyze the bp, dl, and wf values derived from the response function. Differences 
in the bp indicate whether the manipulation of interest shifted the response 
function to the left or right and changes in temporal sensitivity are revealed by 
differences in the dl or wf.

Whether a manipulation shifts the psychometric response function in an  
additive or multiplicative manner provides critical information for under-
standing the putative psychological mechanisms underlying effects on interval  
timing. For example, within the Scalar Timing Theory (STT; Gibbon, Church, 
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& Meck, 1984) framework, if a manipulation affects the  pacemaker rate, then 
the shift in bp will be multiplicative across duration ranges. More concretely, if 
the bp changes from 4 to 4.4 s for a 2 vs. 8 s anchor duration pair, then it should 
shift from 4.24 to 4.67 s for a 3 vs. 6 s anchor pair and from 6.93 to 7.63 s for a 4 
vs. 12 s anchor pair. In contrast, if the manipulation affects detection of the on-
set of the timing stimulus, then the shift in bp will be additive (i.e., a constant 
absolute amount) across anchor duration pairs because the magnitude of the 
timing signal will not materially impact the gain (loss) of timing signal due 
to improved (worsened) stimulus detection. Hence, if a manipulation allows 
the onset of the timing stimulus to be detected 200 ms faster, then the corre-
sponding perceived duration will be lengthened by 200 ms whether the timing 
stimulus is objectively 4 s long or 8 s long.

Ideally, to determine whether a manipulation shifts the bp in an additive 
or multiplicative manner, the experiment should comprise at least three an-
chor duration pairs. This allows the between condition bp difference to be 
calculated for each anchor duration pair and whether the shift is a constant 
absolute amount or a constant proportional amount (i.e., a linear increase), or 
some other functional form, to be determined. In practice, very few duration 
bisection studies have used more than one or two pairs of anchor durations. 
Consequently, most discussions of additive versus multiplicative shifts in the 
bisection function have centered on whether there is evidence for superimpo-
sition of the response functions after normalization by their respective bisec-
tion points. We return to this issue below.

The dl, which reflects the steepness of the psychometric response func-
tion, provides a measure of the participant’s temporal sensitivity or acuity. The 
more consistent a participant is in categorizing the same stimulus duration 
in the test phase, then the steeper the participant’s response function and the 
smaller the corresponding dl. For example, continuing with the 2 vs. 8 s an-
chor pair example described above, a participant who has a 25% long value of 
3.17 s and a 75% long value of 5.04 s has a much sharper response function and 
smaller dl than a participant with a 25% long value of 2.52 and a 75% long 
value of 6.35 (.93 vs. 1.92).

As noted above, the wf provides a measure of temporal sensitivity that is 
corrected for the magnitude of the timed duration, which in the case of dura-
tion bisection means dividing the dl by the bp. If Weber’s Law holds, then the 
wf is constant across conditions. However, to determine the constancy of the 
wf, researchers usually statistically test whether there is a between condition 
difference in the wf and, if not, conclude that Weber’s Law holds. Obviously, 
the failure to find a statistical difference among wf values does not comprise 
particularly strong evidence that the wfs are equivalent.
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It is worth noting that the Scalar Property for time imposes a stricter re-
quirement on response functions than mere equivalence of wf values. Rather, 
when normalized by t/bp, where T is a probe duration, the entire psychomet-
ric response function should superimpose (Gibbon, 1981; Penney et al., 2000). 
However, response function superimposition is usually tested “by eye” in com-
bination with the wf analysis approach just described. One could subject the 
normalized p(‘long’) values for all test durations to a statistical analysis to de-
termine whether values differ between conditions, but this approach also en-
tails the “accepting the null hypothesis” problem.

To determine whether superimposition held in the presence of a bp dif-
ference between auditory and visual timing stimuli, Penney et al. (2000) 
compared  the superimposition of the response functions when normalized in 
different ways. These were multiplicative normalization in which p(‘long’) was 
plotted against t/bp (i.e., the typical approach) and what the authors termed 
“lateral” normalization in which they rescaled the objective time axis by add-
ing one half of the difference between the auditory and visual bps to each  
T value for the auditory modality and subtracted half of the bp difference for 
the visual modality. Sigmoidal equations were fit to the resulting response 
functions and the quality of the fit used as a measure of the degree of superim-
position. A statistical test revealed that fit quality was better for the multiplica-
tive normalization than the lateral normalization, a result that was taken as 
support for a clock speed interpretation of the shift rather than a timing onset 
interpretation.

Balcı and colleagues introduced a more principled method for examining 
shifts in psychometric response functions obtained from the duration bisec-
tion task (Balcı & Gallistel, 2006; Çoşkun et al., 2015). Although not explicitly 
used for this purpose in their papers, the approach can easily be applied to 
test superimposition of two, or more, response functions. First, the best fitting 
cumulative normal distribution function (or another sigmoidal function that 
best describes the data) is determined for the p(‘long’) data in each condition 
and the log likelihood of each data point for each distribution fit is calculated. 
These log likelihoods are summed to obtain the likelihood of the data under 
 different cumulative distributions with different mean and variance parame-
ters (i.e., the non-superimposition model). The superimposition model can be 
obtained, for instance, by applying one of the best fitting distributions obtained 
in the first step to the data from all conditions. As above, log likelihoods of each 
data point are obtained and summed to obtain the likelihood of the data un-
der the single cumulative distribution model. The superimposition and non-
superimposition models can then be compared. The likelihood of the data will 
always be higher for the latter than the former model, but this difference might  
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not be large enough to legislate choosing the non-superimposition model over 
the superimposition model after the difference in number of  free-parameters 
is considered. Thus, the difference between the sum of log likelihoods should 
be penalized by some function of the extra number of parameters that the 
non-superimposition model has. This constitutes the essence of many model 
comparison statistics widely used in the literature (e.g., Bayesian information 
criterion, Akaike information criterion).

6.2 Theory-based Analysis
Many different theoretical models have been applied to data from the duration 
bisection task. Perhaps the most popular applications have been of models 
that fall within the framework provided by Scalar Expectancy Theory (set; 
Gibbon, 1977) and its information processing companion model, Scalar Tim-
ing Theory (stt; Gibbon, Church, & Meck, 1984). There are several different 
duration bisection models within the set/stt framework, with the differences 
among models centering on what parameters are allowed to vary and the deci-
sion rules assumed to apply. For example, Meck (1983) applied Gibbon’s Refer-
ents Known Exactly (rke) model to account for pharmacological and electric 
shock induced effects on timing. As the name suggests, this model assumes 
that perceptual variance is greater than the variance in the values stored in 
reference memory. However, the Sample Known Exactly (ske) model has been 
more commonly used. It was originally proposed by Gibbon (1981) and, sub-
sequently, modified by various researchers to account for a broader range of 
experimental results (e.g., Meck, 1984; Penney, Gibbon, & Meck, 2000, 2008). 
The ske model posits that the participant maintains a veridical representa-
tion of the probe duration presented on the test trial (i.e., the current sample 
is known exactly), whereas there is variability in the memory representations 
for S and L. In its simplest form, the model has two free parameters: g, which 
reflects variation in the S and L memory representations, and b, which repre-
sents bias to respond long. The decision rule to respond “long” in the ske mod-
el is [m(T)2] > (wSwL)/b, where m(T) represents mean subjective time, and wS 
and wL are samples from the memory distributions for S and L. In the absence 
of bias, this decision rule results in bisection at the geometric mean of S and 
L. Of course, many other duration bisection models exist in the literature (e.g., 
Allan, 2002; Balcı & Simen, 2014; Kopec & Brody, 2010; Machado & Pata, 2005; 
Rodríguez-Gironés & Kacelnik, 2001; Wearden, 1991).

The major benefit of a theoretical analysis is that it provides an interpre-
tive framework for understanding the pattern of results obtained in an experi-
ment. For example, determining whether a between condition difference is 
due to a clock speed effect or a memory storage effect. Meck (1983) used the 
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duration bisection procedure in the context of examining pharmacological 
(methamphetamine, haloperidol, physostigmine, atropine) and stress (foot-
shock) effects on interval timing. He found that when animals were trained 
in a non-drug state (i.e., following saline administration), dopamine (da) 
agonists shifted the bisection response function to the left, whereas da an-
tagonists shifted the response function to the right. For the cholinergic drugs, 
the agonist (i.e., physostigmine) decreased the remembered duration of the 
reinforced interval, such that the psychophysical response function was left 
shifted, whereas an ACh antagonist (i.e., atropine) increased the remembered 
duration of the reinforced interval, such that the response function was right 
shifted. Interpreting this result within the stt framework, Meck concluded 
that da agonists selectively increased clock speed and antagonists selectively 
decreased it, whereas ACh agonists increased memory storage speed while an-
tagonists decreased it.

7 Implementation Recommendations

What constitutes best practice in the bisection task depends on the question 
being asked. For example, if one wishes to unambiguously demonstrate that a 
shift in the psychometric response function is multiplicative rather than addi-
tive, then three sets of anchor duration pairs should be used in a within-subjects  
design. However, interference between sets of learned anchor durations is  
a concern when more than one duration pair is presented within the same 
test session. Moreover, particularly when using seconds range durations,  
the test session may be rather lengthy. Consequently, very few duration bisec-
tion papers published within the past decade have used more than two pairs of 
anchors durations and most have used a single anchor duration pair.

The selection of L/S range is also important. The task should not be too 
difficult as this may result in poor performance. However, it also should not 
be too easy as this may result in participants not being particularly attentive. 
 Perhaps the most commonly used L/S range has been 4:1, although most of 
these  studies came from the same research group or closely related groups. 
Choice of stimulus spacing is less critical, but if one intends to compare the 
results with previous findings in the literature, then it should be considered 
carefully because, as described above, it can influence the location of the bp.

We recommend presenting at least 10 trials at each probe duration during 
the test phase of the task. The goal is to have enough resolution in the timing 
measure to provide relatively smooth response functions, while not inducing 
task fatigue in the participants. Of course, how many trials can be run  without 
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participant fatigue depends on the participants themselves. We have conduct-
ed duration bisection eeg experiments in which 56 trials were presented at 
each probe duration (Ng et al., 2011). This was necessary to ensure adequate 
trials for the eeg analysis, in spite of our concerns about participant fatigue. 
However, as shown in Figure 5.4, even at the individual participant level data 
quality from the fourth quarter of the test session was quite good. Notably, 
the participants were university students and the test durations were relatively 
short (anchor durations of .8 and 3.2 s). It seems unlikely that children, or indi-
viduals with neurological problems, would be as attentive from start to finish 
of such a lengthy trial sequence.

For normal, adult participants, we recommend using seven durations in 
the test phase (i.e., two anchor durations and five intermediate probes). This 
number of durations is more likely to reveal the true form of the response 
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Figure 5.4 Data from a single subject illustrating performance early and late in a duration bi-
section test session that comprised 392 trials. Each response function was generated 
by randomly selecting 10 trials for each probe duration from the first and the last 
quarter of the test session.
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 function and provide a more accurate estimate of the bp and dl/wf. However, 
in situations where the amount of time available for testing is limited or one is 
concerned about participant fatigue (e.g., with certain patient  populations or 
young children), then it may be necessary to reduce the number of  intermediate 
probe durations to three for a total of five test phase durations.

In sum, the duration bisection task is relatively easy to implement across a 
wide range of participant populations and, therefore, has seen substantial use, 
particularly in situations where one wants to eliminate the influence of motor 
responding on the duration estimate. However, the details of task implemen-
tation can have a profound impact on the data obtained. Consequently, task 
parameters must be carefully considered in light of the particular psychologi-
cal question being asked.
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Table 5.� These publications present data from variants of the duration bisection task. 
Duration range (milliseconds – ms or seconds – s) and subject species are indicated 
for each publication.

Duration Subjects Reference

s Pigeons Stubbs, A. (1968). The discrimination of stimulus duration by 
pigeons. Journal of the Experimental Analysis of Behavior, 11, 
223–238.

s Pigeons Stubbs, D.A. (1976). Scaling of stimulus duration by pigeons. 
Journal of the Experimental Analysis of Behavior, 26, 15–25.

s Rats Church, R.M., & Deluty, M.Z. (1977). Bisection of temporal 
intervals. Journal of Experimental Psychology: Animal Behavior 
Processes, 3, 216–228

s Rats Meck, W.H. (1983). Selective adjustment of the speed of 
internal clock and memory processes. Journal of Experimental 
Psychology: Animal Behavior Processes, 9, 171–201.

s Pigeons Platt, J.R., & Davis, E.R. (1983). Bisection of temporal 
intervals by pigeons. Journal of Experimental Psychology: 
Animal Behavior Processes, 9, 160–170.

ms & s Rats Raslear, T.G. (1983). A test of the Pfanzagl bisection model 
in rats. Journal of Experimental Psychology: Animal Behavior 
Processes, 9, 49–62.

s Rats Meck, W.H. (1984). Attentional bias between modalities: 
Effects on the internal clock, memory, and decision stages 
used in animal time discrimination. In J. Gibbon & L. Allan 
(Eds.), Timing and time perception (pp. 528–541). New York: 
New York Academy of Sciences.

s Rats Siegel, S.F., & Church, R.M. (1984). The decision rule in 
temporal bisection. In J. Gibbon & L. Allan (Eds.), Timing and 
time perception (pp. 643–645). New York: New York Academy 
of Sciences.

ms & s Rats Raslear, T.G. (1985). Perceptual bias and response bias in 
temporal bisection. Perception & Psychophysics, 38, 261–268.

s Humans 
– adults

Allan, L.G., & Gibbon, J. (1991). Human bisection at the 
geometric mean. Learning and Motivation, 22, 39–58.
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ms Humans 
– adults

Wearden, J.H. (1991). Human performance on an analogue 
of an interval bisection task. The Quarterly Journal of 
Experimental Psychology, 43, 59–81.

ms Humans 
– adults

Wearden, J.H., & Ferrara, A. (1995). Stimulus spacing effects 
in temporal bisection by humans. The Quarterly Journal of 
Experimental Psychology, 48, 289–310.

ms & s Humans 
– adults

Nichelli, P., Alway, D., & Grafman, J. (1996). Perceptual  
timing in cerebellar degeneration. Neuropsychologia, 34, 
857–873.

ms Humans 
– adults

Wearden, J.H. (1996). Stimulus range effects in temporal 
bisection by humans. The Quarterly Journal of Experimental 
Psychology: Section B, 49, 24–44.

s Rats Al-Zahrani, S.S.A., Ho, M.Y., Al-Ruwaitea, A.S.A., Bradshaw, 
C.M., & Szabadi, E. (1997). Effect of destruction of the 
5-hydroxytryptaminergic pathways on temporal memory: 
quantitative analysis with a delayed interval bisection task. 
Psychopharmacology, 129, 48–55.

s Humans 
– adults

Wearden, J.H., Rogers, P., & Thomas, R. (1997). Temporal 
bisection in humans with longer stimulus durations. The 
Quarterly Journal of Experimental Psychology: Section B, 50, 
79–94.

s Humans 
– adults

Penney, T.B., Gibbon, J., & Meck, W.H. (2000). Differential 
effects of auditory and visual signals on clock speed and 
temporal memory. Journal of Experimental Psychology: 
Human Perception and Performance, 26, 1770–1787.

ms Humans 
– adults

Allan, L.G. & Gerhardt, K. (2001). Temporal bisection with 
trial referents. Perception and Psychophysics, 63, 524–540.

s Humans 
– children

Droit-Volet, S., & Wearden, J.H. (2001). Temporal bisection 
in children. Journal of Experimental Child Psychology, 80, 
142–159.

s Humans 
– children

Rattat, A.C., & Droit-Volet, S. (2001). Variability in 5-and 
8-year-olds’ memory for duration: An interfering task in 
temporal bisection. Behavioural Processes, 55, 81–91.
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ms & s Humans 
– adults

Rodríguez-Gironés, M.A., & Kacelnik, A. (2001). Relative 
importance of perceptual and mnemonic variance in human 
temporal bisection. The Quarterly Journal of Experimental 
Psychology: Section A, 54, 527–546.

s Humans 
– adults

Allan, L.G. (2002). The location and interpretation of 
bisection point. The Quarterly Journal of Experimental 
Psychology, 55B, 43–60.

s Humans 
– adults

Droit-Volet, S., Clément, A., & Fayol, M. (2003). Time and 
number discrimination in a bisection task with a sequence of 
stimuli: A developmental approach. Journal of Experimental 
Child Psychology, 84, 63–76.

ms Humans 
– adults & 
children

Droit-Volet, S., Tourret, S., & Wearden, J. (2004). Perception 
of the duration of auditory and visual stimuli in children and 
adults. Quarterly Journal of Experimental Psychology Section 
A, 57, 797–818.

ms Humans 
– adults

Brown, G.D., McCormack, T., Smith, M., & Stewart, N. (2005). 
Identification and bisection of temporal durations and tone 
frequencies: common models for temporal and nontemporal 
stimuli. Journal of Experimental Psychology: Human 
Perception and Performance, 3, 919–938.

s Pigeons Machado, A., & Pata, P. (2005). Testing the scalar expectancy 
theory (set) and the learning-to-time model (LeT) in a 
double bisection task. Animal Learning & Behavior, 33, 
111–122.

ms & s Humans 
– adults

Melgire, M., Ragot, R., Samson, S., Penney, T.B., Meck, W.H., 
& Pouthas, V. (2005). Auditory/visual duration bisection in 
patients with left or right medial-temporal lobe resection. 
Brain and Cognition, 58, 119–124.

s Humans 
– adults

Penney, T.B., Meck, W.H., Roberts, S.A., Gibbon, J., & 
Erlenmeyer-Kimling, L. (2005). Interval-timing deficits 
in individuals at high risk for schizophrenia. Brain and 
Cognition, 58, 109–118.

s Humans 
– adults

Balcı, F., & Gallistel, C.R. (2006). Cross-domain transfer of 
quantitative discriminations: Is it all a matter of proportion? 
Psychonomic Bulletin & Review, 13, 636–642.
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ms & s Humans 
– adults

Effron, D.A., Niedenthal, P.M., Gil, S., & Droit-Volet, S.  
(2006). Embodied temporal perception of emotion. Emotion, 
6, 1–9.

ms & s Humans 
– adults & 
children

Droit-Volet, S., & Rattat, A.C. (2007). A further analysis 
of time bisection behavior in children with and without 
reference memory: The similarity and the partition task. Acta 
Psychologica, 125, 240–256.

s Humans 
adults & 
children,

Droit-Volet, S., Meck, W.H., & Penney, T.B. (2007). Sensory 
modality and time perception in children and adults. 
Behavioural Processes, 74, 244–250.

ms & s Humans 
– adults

Lee, K.H., Egleston, P.N., Brown, W.H., Gregory, A.N., Barker, 
A.T., & Woodruff, P.W. (2007). The role of the cerebellum 
in subsecond time perception: Evidence from repetitive 
transcranial magnetic stimulation. Journal of Cognitive 
Neuroscience, 19, 147–157.

ms & s Humans 
– adults

Ortega, L., & Lopez, F. (2008). Effects of visual flicker on 
subjective time in a temporal bisection task. Behavioural 
Processes, 78, 380–386.

s Pigeons, 
Mice, 
Humans 
– adults

Penney, T.B., Gibbon, J., & Meck, W.H. (2008). Categorical 
scaling of duration bisection in pigeons (Columba livia), mice 
(Mus musculus), and humans (Homo sapiens). Psychological 
Science, 19, 1103–1109.

ms & s Humans 
– adults

Tipples, J. (2008). Negative emotionality influences the 
effects of emotion on time perception. Emotion, 8, 127–131.

ms & s Humans 
– adults

Gil, S., & Droit-Volet, S. (2009). Time perception, depression 
and sadness. Behavioural Processes, 80, 169–176.

s Pigeons Ward, R.D., Barrett, S.T., Johnson, R.N., & Odum, A.L. (2009). 
Nicotine does not enhance discrimination performance in a 
temporal bisection procedure. Behavioural Pharmacology, 20, 
99–108.

s Pigeons Johnson, R.N., Ward, R.D., & Odum, A.L. (2010). Baseline 
training history and effects of methamphetamine on 
performance of pigeons on an interval-bisection task. 
Behavioural Processes, 84, 484–489.

ms & s Humans 
– adults

Tipples, J. (2010). Time flies when we read taboo words. 
Psychonomic Bulletin & Review, 17, 563–568.
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s Rats Brown, B.L., Höhn, S., Faure, A., von Hörsten, S., Le Blanc, P., 
Desvignes, N., El Massioui, N., & Doyère, V. (2011). Temporal 
sensitivity changes with extended training in a bisection 
task in a transgenic rat model. Frontiers of Integrative 
Neuroscience, 5, 10.

ms & s Humans 
– adults & 
children

Gil, S., & Droit-Volet, S. (2011). Time perception in response 
to ashamed faces in children and adults. Scandinavian 
Journal of Psychology, 52, 138–145.

s Humans 
– adults & 
children

Lustig, C., & Meck, W.H. (2011). Modality differences in 
timing and temporal memory throughout the lifespan. Brain 
and Cognition, 77, 298–303.

ms & s Humans 
– adults

Ng, K.K., Tobin, S., & Penney, T.B. (2011). Temporal 
accumulation and decision processes in the duration 
bisection task revealed by contingent negative variation. 
Frontiers of Integrative Neuroscience, 5, 10.

ms & s Humans 
– infants

Provasi, J., Rattat, A.C., & Droit-Volet, S. (2011). Temporal 
bisection in 4-month-old infants. Journal of Experimental 
Psychology: Animal Behavior Processes, 37, 108–113.

ms & s Humans 
– adults

Tipples, J. (2011). When time stands still: Fear-specific 
modulation of temporal bias due to threat. Emotion, 11, 
74–80.

ms & s Humans 
– adults & 
children

Zélanti, P.S., & Droit-Volet, S. (2011). Cognitive abilities 
explaining age-related changes in time perception of short 
and long durations. Journal of Experimental Child Psychology, 
109, 143–157.

s Pigeons Carvalho, M.P.D., & Machado, A. (2012). Relative versus 
absolute stimulus control in the temporal bisection task. 
Journal of the Experimental Analysis of Behavior, 98, 23–44.

ms & s Humans 
– children

Gil, S., Chambres, P., Hyvert, C., Fanget, M., & Droit-Volet, S. 
(2012). Children with autism spectrum disorders have “the 
working raw material” for time perception. PLoS ONE, 7, 
e49116.

ms & s Humans 
– adults

Shi, Z., Jia, L., & Müller, H.J. (2012). Modulation of tactile 
duration judgments by emotional pictures. Frontiers in 
Integrative Neuroscience, 6. 24.

ms & s Humans 
– adults & 
children

Droit-Volet, S., & Zélanti, P. (2013). Development of time 
sensitivity: duration ratios in time bisection. The Quarterly 
Journal of Experimental Psychology, 66, 671–686.
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ms Humans 
– adults

Fallow, K.M., & Voyer, D. (2013). Degree of handedness, 
emotion, and the perceived duration of auditory stimuli. 
Laterality: Asymmetries of Body, Brain and Cognition, 18, 
671–692.

ms Humans 
– adults

Iordanescu, L., Grabowecky, M., & Suzuki, S. (2013). Action 
enhances auditory but not visual temporal sensitivity. 
Psychonomic Bulletin & Review, 20, 108–114.

s Rats Kim, J., Ghim, J.W., Lee, J.H., & Jung, M.W. (2013). Neural 
correlates of interval timing in rodent prefrontal cortex. The 
Journal of Neuroscience, 33, 13834–13847.

ms Humans 
– adults

Kroger-Costa, A., Machado, A., & Santos, J.A. (2013). Effects 
of motion on time perception. Behavioural Processes, 95, 
50–59.

s Humans 
– adults

Lindbergh, C.A., & Kieffaber, P.D. (2013). The neural 
correlates of temporal judgments in the duration bisection 
task. Neuropsychologia, 51, 191–196.

s Humans 
– adults

Martínez-Cascales, I., Fuente, J.D.L., & Santiago de Torres, J. 
(2013). Space and time bisection in schizophrenia. Frontiers 
in Psychology, 4, 823.

ms & s Humans 
– adults

Nicol, J.R., Tanner, J., & Clarke, K. (2013). Perceived duration 
of emotional events: Evidence for a positivity effect in older 
adults. Experimental Aging Research, 39, 565–578.

s Humans 
– adults

Spínola, I., Machado, A., de Carvalho, M.P., & Tonneau, 
F. (2013). What do humans learn in a double, temporal 
bisection task: Absolute or relative stimulus durations? 
Behavioural Processes, 95, 40–49.

ms & s Humans 
– adults

Balcı F. & Simen, P. (2014) Decision processes in temporal 
discrimination. Acta Psychologica, 149, 157–168.

ms & s Humans 
– adults

Fayolle, S.L., & Droit-Volet, S. (2014). Time perception and 
dynamics of facial expressions of emotions. PLoS ONE, 9, 
e97944.

s Humans 
– adults

Jozefowiez, J., Polack, C.W., Machado, A., & Miller, R.R. 
(2014). Trial frequency effects in human temporal bisection: 
Implications for theories of timing. Behavioural Processes, 
101, 81–88.
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s Humans 
– adults

Penney, T.B., Yim, E.N., & Ng, K.K. (2014). Distractor 
expectancy effects on interval timing. Timing & Time 
Perception, 2, 1–19.

ms Humans 
– adults

Wiener, M., Thompson, J.C., & Coslett, H.B. (2014). 
Continuous carryover of temporal context dissociates 
response bias from perceptual influence for duration. PLoS 
ONE, 9, e100803.

s Humans 
– adults

Çoşkun, F., Sayalı, Z.C., Gürbüz, E., Balcı, F. (2015). Optimal 
time discrimination. Quarterly Journal of Experimental 
Psychology, 68, 381–401.

ms & s Humans 
– adults

Droit-Volet, S., Lamotte, M., & Izaute, M. (2015). The 
conscious awareness of time distortions regulates the effect 
of emotion on the perception of time. Consciousness and 
Cognition, 38, 155–164.

s Humans 
– adults

Herbst, S.K., Chaumon, M., Penney, T.B., & Busch, N.A. 
(2015). Flicker-induced time dilation does not modulate 
eeg correlates of temporal encoding. Brain Topography, 28, 
559–569.

ms Humans 
– adults

Jia, L., Shi, Z., Zang, X., & Müller, H.J. (2015). Watching a 
real moving object expands tactile duration: The role of 
task-irrelevant action context for subjective time. Attention, 
Perception, & Psychophysics, 77, 2768–2780.

ms & s Humans 
– adults

Jusyte, A., Schneidt, A., & Schönenberg, M. (2015). Temporal 
estimation of threatening stimuli in social anxiety disorder: 
Investigation of the effects of state anxiety and fearfulness. 
Journal of Behavior Therapy and Experimental Psychiatry, 47, 
25–33.

ms & s Humans 
– adults

Kliegl, K.M., Watrin, L., & Huckauf, A. (2015). Duration 
perception of emotional stimuli: Using evaluative 
conditioning to avoid sensory confounds. Cognition and 
Emotion, 29, 1350–1367.

s Humans 
– adults

Levy, J.M., Namboodiri, V.M., & Shuler, M.G.H. (2015). 
Memory bias in the temporal bisection point. Frontiers in 
Integrative Neuroscience, 9, 44.

ms Humans 
– adults

Voyer, D., & Reuangrith, E. (2015). Perceptual asymmetries 
in a time estimation task with emotional sounds. Laterality: 
Asymmetries of Body, Brain and Cognition, 20, 211–231.

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



Penney and Cheng��4

<UN>

Duration Subjects Reference

ms & s Humans 
– adults

Zhang, Z., Jia, L., & Ren, W. (2015). Time changes with 
feeling of speed: an embodied perspective. Frontiers in 
Neurorobotics, 8.

s Mice Akdoğan, B., & Balcı, F. (2016). Stimulus probability effects 
on temporal bisection performance of mice (Mus musculus). 
Animal Cognition, 19, 15–30.

s Humans 
– adults

Akdoğan, B., & Balcı, F. (2016). The effects of payoff 
manipulations on temporal bisection performance. Acta 
Psychologica, 170, 74–83.

ms Humans 
– adults

Colonnello, V., Domes, G., & Heinrichs, M. (2016). As time 
goes by: Oxytocin influences the subjective perception of 
time in a social context. Psychoneuroendocrinology, 68, 
69–73.

ms & s Humans 
– adults

Droit-Volet, S., Fayolle, S., & Gil, S. (2016). Emotion and time 
perception in children and adults: The effect of task difficulty. 
Timing & Time Perception, 4,7–29.

ms & s Humans 
– adults

Eberhardt, L.V., Huckauf, A., & Kliegl, K.M. (2016). Effects 
of neutral and fearful mood on duration estimation of 
neutral and fearful face stimuli. Timing & Time Perception, 4, 
30–47.

s Rats Es-seddiqi, M., El Massioui, N., Samson, N., Brown, B.L., & 
Doyère, V. (2016). The amygdalo-nigrostriatal network is 
critical for an optimal temporal performance. Learning & 
Memory, 23, 104–107.

s Pigeons Fox, A.E., Prue, K.E., & Kyonka, E.G. (2016). What is timed in 
a fixed-interval temporal bisection procedure? Learning & 
Behaviour, 44, 366–377.

ms Humans 
– adults

Ishikawa, K., & Okubo, M. (2016). Overestimation of the 
subjective experience of time in social anxiety: Effects of 
facial expression, gaze direction, and time course. Frontiers in 
Psychology, 7, 711.

s Pigeons Laude, J.R., Daniels, C.W., Wade, J.C., & Zentall, T.R. (2016). 
I can time with a little help from my friends: Effect of social 
enrichment on timing processes in Pigeons (Columba livia). 
Animal Cognition, 19, 1205–1213.
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ms & s Humans 
– adults

Millot, J.L., Laurent, L., & Casini, L. (2016). The influence of 
odors on time perception. Frontiers in Psychology, 7, 181.

ms Humans 
– adults

Mioni, G., Grondin, S., Forgione, M., Fracasso, V., Mapelli, 
D., & Stablum, F. (2016). The role of primary auditory and 
visual cortices in temporal processing: A tDCS approach. 
Behavioural Brain Research, 313, 151–157.

s Rats Peterson, J.R., & Kirkpatrick, K. (2016). The effects of a 
time-based intervention on experienced middle-aged rats. 
Behavioural Processes, 133, 44–51.

ms & s Humans 
– adults

Pillai, J.S., & McLoughlin, A. (2016). Exercise and time 
perception: An exploration of the impact of high intensity 
cardio exercise (Zumba) on human timing. Timing & Time 
Perception, 4, 343–353.

s Pigeons Pinheiro de Carvalho, M., Machado, A., & Tonneau, F. (2016). 
Learning in the temporal bisection task: Relative or absolute? 
Journal of Experimental Psychology: Animal Learning and 
Cognition, 42, 67–81.

ms & s Humans 
– adults

Righi, S., Galli, L., Paganini, M., Bertini, E., Viggiano, M.P., 
& Piacentini, S. (2016). Time perception impairment in 
early-to-moderate stages of Huntington’s disease is related to 
memory deficits. Neurological Sciences, 37, 97–104.

ms & s Humans 
– adults

Schirmer, A., Ng, T., Escoffier, N., & Penney, T.B. (2016). 
Emotional voices distort time: Behavioral and neural 
correlates. Timing & Time Perception, 4, 79–98.

ms & s Humans 
– adults

Terhune, D.B., Sullivan, J.G., & Simola, J.M. (2016). Time 
dilates after spontaneous blinking. Current Biology, 26, 
R459–R460.

s Humans 
– adults

Yamamoto, K., & Miura, K. (2016). Effect of motion 
coherence on time perception relates to perceived speed. 
Vision Research, 123, 56–62.

ms Humans 
– adults

Zhang, J., Nombela, C., Wolpe, N., Barker, R.A., & Rowe, J.B. 
(2016). Time on timing: Dissociating premature responding 
from interval sensitivity in Parkinson’s disease. Movement 
Disorders, 31, 1163–1172.

s Pigeons Araiba, S., & Brown, B.L. (2017). The effect of the long 
anchor duration on performance in the temporal bisection 
procedure. Behavioural Processes, 135, 76–86.
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ms Humans 
– children

Casini, L., Pech-Georgel, C., & Ziegler, J.C. (2017). It’s about 
time: Revisiting temporal processing deficits in dyslexia. 
Developmental Science, e12530.

ms Humans 
– adults

Charras, P., Droit-Volet, S., Brechet, C., & Coull, J.T. (2017). 
The spatial representation of time can be flexibly oriented 
in the frontal or lateral planes from an early age. Journal of 
Experimental Psychology: Human Perception and Performance, 
43, 832–845.

s Dogs Domeniconi, C., & Machado, A. (2017). Temporal bisection 
task with dogs: An exploratory study. Psychology & 
Neuroscience, 10, 101–108.

ms & s Humans 
– adults & 
children

Droit-Volet, S. (2017). Time dilation in children and adults: 
The idea of a slower internal clock in young children tested 
with different click frequencies. Behavioural Processes, 138, 
152–159.

ms & s Humans 
– adults

Gable, P.A., Neal, L.B., & Poole, B.D. (2017). Sadness speeds 
and disgust drags: Influence of motivational direction on 
time perception in negative affect. Motivation Science, 2, 
238–255.

ms & s Humans 
– adults

Gonidis, L., & Sharma, D. (2017). Internet and Facebook 
related images affect the perception of time. Journal of 
Applied Social Psychology, 47, 224–231.

ms Humans 
– adults

Jones, C.R., Lambrechts, A., & Gaigg, S.B. (2017). Using 
time perception to explore implicit sensitivity to emotional 
stimuli in autism spectrum disorder. Journal of Autism and 
Developmental Disorders, 47, 2054–2066.

ms Humans 
– adults

Makwana, M., & Srinivasan, N. (2017). Intended outcome 
expands in time. Scientific Reports, 7, 6305.

ms & s Humans 
– adults

Lamotte, M., & Droit-Volet, S. (2017). Aging and time 
perception for short and long durations: A question of 
attention? Timing & Time Perception, 5, 149–167.

ms & s Humans 
– adults

Sarigiannidis, I., Ernst, M., Grillon, C., Roiser, J., & Robinson, 
O. (2017). Induced anxiety leads to underestimating time. 
Biological Psychiatry, 81, S352.

Table 5.� These publications present data from variants of the duration bisection task. (cont.)
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Duration Subjects Reference

ms & s Humans 
– adults

Zhang, M., Zhang, L., Yu, Y., Liu, T., & Luo, W. (2017). Women 
overestimate temporal duration: Evidence from Chinese 
emotional words. Frontiers in Psychology, 8, 4.

ms Humans 
– adults

Wiener, M., Parikh, A., Krakow, A., & Coslett, H.B. (2017). 
Causal role of beta oscillations in time estimation. bioRxiv, 
165233.
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chapter 6

Temporal Decision-making: Common Procedures 
and Contemporary Approaches

David Freestone and Fuat Balcı

1 Introduction

Various procedures have been developed to investigate interval timing and 
time-based choice behavior. These methods are typically first developed and 
validated in non-human animals and then adapted for human testing. Several 
researchers in particular have contributed to the adaptation of prominent pro-
cedures to humans and, thus, to our cross-species understanding of interval 
timing behavior (e.g., Allan & Gibbon 1991; Rakitin et al. 1998; Wearden 2002). 
Each of these procedures has advantages and disadvantages in terms of their 
sensitivity to measuring psychological variables. Thus, the choice of the most 
suitable procedure for a given research question entails a deep understanding 
of the procedure and its analysis.

In this chapter, we describe three different interval timing procedures: the 
peak interval task, the switch task, and the differential reinforcement of low 
rates of responding (drl) task. Our aim is to provide a wide range of data ac-
quisition and analysis tools to our readers. The peak interval task is a temporal 
differentiation task, the switch task is a real-time temporal discrimination task, 
and the drl task is a response inhibition task. The peak interval procedure is 
used most widely, whereas the switch and drl tasks are used relatively less 
often. However, together, these three tasks add complementary results about 
human timing ability. Furthermore, performance on the switch and drl tasks 
(and, maybe, the peak interval task) can be evaluated with respect to objective 
optimal functions to investigate the temporal risk assessment (for review see 
Balcı et al. 2011).

We will describe each procedure separately. We will first provide background 
information regarding the use of each procedure, followed by the description 
of the analysis. Programming code written in Python to collect and analyze the 
data accompany this chapter. These applications include line by line descrip-
tions and tutorials for readers who are interested in following each step of the ex-
perimental procedure through data processing. The Python code can be found 
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at our github page for this chapter (https://github.com/freestone-lab/timing 
_tasks.git) and at the book’s GitHub repository.

2 Peak Interval Procedure

2.1 Background
Experimental psychologists have been using fixed interval (fi, operant con-
ditioning) and fixed time (ft, classical conditioning) schedules for decades. 
The response patterns across species in both tasks is similar, and have led to 
general and important results regarding animal timing ability (Ferster & Skin-
ner 1957; Pavlov, 1927; Schneider, 1969). Freestone, MacInnis, and Church (2013) 
have  argued that the timing mechanisms exert their effect on both operant 
and classically conditioned responses in the same way. Pavlov showed that 
the delay to the onset of conditioned response is correlated with the interval 
between conditioned stimulus and unconditioned stimulus. This observation 
was termed as the “inhibition of delay” by Pavlov (Pavlov 1927; Drew et al. 2005). 
In the original version of the fi schedule of reinforcement, the participant is 
reinforced for the first response after the fixed interval. This cycle continues 
over the course of a session without any interruption by inter-trial intervals 
(itis). At steady state, the rate of responding abruptly increases a little more 
than half way through the trial (e.g., Schneider, 1969). When averaged over tri-
als, the response rate gradually increases throughout the interval. The discrete 
version of the task, where trials are signaled by a conditioned stimulus (and 
separated by an iti), shows the same pattern of results.

The peak interval procedure extends the discrete fi procedure, and is argu-
ably one of the most widely used tasks in interval timing research. This proce-
dure was originally developed by Catania (1970) and Roberts (1981) for animal 
testing and it has been used to characterize the temporal characteristics of 
 anticipatory responses for reinforcers that are available after a fixed delay after 
the onset of a conditioned stimulus. Unlike discrete fi procedures, the peak 
interval procedure also contains test trials in which the conditioned stimu-
lus lasts much longer than the fi and reinforcement is not given. These trials 
 allow us to observe anticipatory responses as a function of trial time based on 
reinforcement expectancy without any contamination by the reinforcement 
delivery. The average rate of responding forms a curve with a peak (hence the 
name). This curve is roughly normally distributed, centered around the typical 
reinforcement time, which presumably reflects the animal’s expectation about 
when food is typically delivered. The data analysis can be conducted at the 
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level of average response curves or individual trials. This task has been adapted 
to human testing in various ways (e.g., Balcı et al., 2013; Rakitin et al. 1998). We 
use the human version of the task below because it is straightforward for read-
ers to follow along using the code we provide with this chapter.

2.2 Procedural Details
2.2.1 Fixed Interval Training
In the fi procedure, a timing stimulus is presented and a response option is 
available (this could be a key on a keyboard or response box or a keyboard). 
This starts a trial. The first response following the fixed interval results in a 
reinforcer (e.g., monetary reward), responses prior to this time do not payoff, 
but are not penalized. The stimulus turns off when the reinforcer is delivered. 
The fi trials are separated by an intertrial interval (ITI), which should not be 
predictable. In the limited hold version of the task, the trial ends without rein-
forcement if too much time has elapsed, that is, the reinforcement is only held 
for a limited time. This ensures that the experienced delay to the outcome is 
not much longer than the scheduled delay (e.g., Stoddard et al., 1988).

2.2.2 Peak Interval Testing
Testing is composed of both discrete fi and peak interval (pi) trials. In pi tri-
als, the stimulus is presented much longer than the fixed interval to reinforce-
ment (typically 3×FI) and responses are not reinforced. Peak trials allow the 
experimenters to observe the timed behavior not only prior to the typical rein-
forcement time (as in fi trials) but how expectation declines after the typical 
reinforcement time has elapsed without reinforcement. The proportion of pi 
trials to total number of trials often ranges from .33 to .5. Experimenters might 
choose first give 100% fi trials (training) before adding peak trials, or they may 
skip training and mix the trial types from the start. The training phase allows 
participants to learn the reinforcement time on every trial before being tested 
on peak trials, but this limits the total number of pi trials that can be collected 
in a single session. There is no restriction on the number of intervals partici-
pants may time. For example, two pi procedures can each be associated with 
a different response, running either concurrently or in separate trials in the 
same session. The timing stimulus can be a visual cue (e.g., change in the color 
of a square or the screen) or an auditory signal. And these stimuli can be the 
same or different for different intervals.

Participants can be either asked to emit multiple responses (Rakitin et al.  
1998) or press and hold the key when they think the reinforcement time ap-
proaches, then release it when they think the reinforcement was omitted 
(e.g., Balcı et al., 2013). In order to capture the biomechanical cost of  responding 
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in animal studies, an explicit cost can be introduced per response (in the mul-
tiple response version) and duration of response (in the press- release version). 
The tutorial that accompanies this chapter (see Github repository) presents 
the version of the task that requires multiple responses during the stimulus. 
Each response is time-stamped and recorded.

2.2.3 Procedure Code
The task was written using PsychoPy (version 1.83.03), and is available on our 
github page. When the program loads, it reads a file “peak_session_ information 
.csv” that specifies the task parameters like the fi and peak intervals, the re-
ward amount, and the cost per response, along with parameters like the ses-
sion duration and break duration (it is often useful to give participants a short 
break to reduce the effects of boredom and fatigue).

In Psychopy, procedures are written as a series of routines. Each routine per-
forms some function, and either waits for a response or some amount of time 
before moving to the next routine. Typically, there will be a routine for the ini-
tial instructions, for closing the experiment, and one or more routines for run-
ning the actual trial. PsychoPy provides a graphical user interface for creating 
these routines. The critical routine for the pi procedure is shown in Figure 6. 1. 
The top image shows the procedure schematic, and the bottom image shows 
the primary PsychoPy routine that runs a trial. Stimuli and responses are add-
ed as components to each routine. A peak interval trial consists of a keyboard 
component (for responses), a text component (for the fixation point), and a 
code component. The code component records the time of each response, and 
keeps track of the score per response. Not shown in the schematic is the iti 
component, but it is important. It not only waits a random time before starting 
a new trial (randomly drawn between 0.5 and 1.5 s), it also randomizes which 
trial type to show. Conditional branching in Psychopy is done by creating Rou-
tine “Loops” around each trial type that executes either zero or one times per 
trial. For example, on pi trials, the “Fixed Interval” loop will execute zero times, 
the “Peak Interval” loop will execute once, the “feedback” loop will execute 
once, and the “break” loop will execute only if it is time for the participant 
to take a break (the time between breaks is a variable specified in the “peak_ 
session_information.csv” file).

2.3 Data Processing and Analysis
2.3.1 Average Response Curves
Data gathered from the pi trials are typically expressed in the form of average 
response curves. In order to build the response curves, the trial duration is di-
vided into fixed-width bins (typically 1 s and the number of responses that fall 
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within each bin is recorded for each trial. The average over trials is computed. 
The result is a scaled histogram that gives the average number of responses 
per second, the response rate in each one-second bin. The average response 
curve is roughly normally distributed with its peak around the typical rein-
forcement time. The reward expectancy increases smoothly as the participant 
approaches the reinforcement time, and decreases smoothly after The more 
data collected, the smoother the curve (we show data from a single participant 

Figure 6.� The peak interval task. Top: A schematic of the task. Bottom: The PsychoPy builder 
screenshot of a fixed interval trial.
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Figure 6.�
Example average response curves for 
Fixed Interval (blue) and Peak Interval 
(red) trials for a short 30-minute session 
for a single participant. The target dura-
tion was 3s in this example.

in a short session in figure 6.2). Many studies also report a slight right skew 
in the peak response curves, which may theoretically important (e.g., Balcı & 
 Simen 2016; Simen et al. 2011; 2013).

A number of key parameters can be estimated from the average response 
curve using parametric and nonparametric statistics. The primary parameters 
are: (i) the location of the peak (peak time), which indicates timing accuracy. 
The closer the peak time is to the typical food time, the more accurate the 
 participant. And (ii) the width of the response curve, which indicates timing 
precision. The wider the distribution, the worse a timer a participant is. The first 
parameter can be estimated by simply locating the trial time of the maximum 
of the response curve, although this might prove difficult if there is substantial 
amount of noise in the data. In these cases, the data can be smoothened us-
ing methods that would minimize the shift in the actual curve. Alternatively, 
researchers can take the average of the trial times at which the response curve 
first exceeds and then first fell below the 90% of the curve’s peak Similarly, the 
second parameter can be estimated by finding the distance in time between 
the distributions 25th and 75th percentiles. These constitute nonparametric 
approaches to the estimation of the timing accuracy and precision.

The parametric approach finds the best fitting distribution  function to the 
response curve. For instance, the best-fit mean $\μ$ parameter of the normal 
distribution function is a measure of the peak time (accuracy), and the best-fit 
standard deviation $\σ$ is a measure of spread (timing precision). The ratio of 
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the standard  deviation to the mean is the coefficient of variation ($\σ / \μ$), 
a critically important measure of precision in the timing literature because 
it is scale-free, it does not depend on the interval timed. Before using these 
 methods, researchers should study the shape of the peak response curves 
to choose the best function possible to characterize their data. Researchers 
should default to using all of the available data unless there is a strict outlier 
criterion specified in advance. A reasonable metric for the fitted distributions 
is how well the model captures the data (e.g., a measure like omega squared). 
In animal data a second gradual increase is sometimes observed toward the 
end of a pi trial. This increase is thought to reflect anticipatory responding to 
the next trial. Increasing the stimulus interval on peak trials and making the 
iti less predictable can minimize this. When it does occur, fitting a second, 
increasing function to the unimodal distribution function (for example, a cu-
mulative distribution function) might be necessary. Finally, the amplitude of 
the peak response curve (peak rate) is another meaningful parameter; it cor-
relates with the subjective value of the anticipated reward in animal studies 
(Roberts, 1981).

2.3.2 Single Trial Responding
Although the average response curve suggests that participants smoothly ramp 
up their response rate, the responses in individual trials suggest that partici-
pants start responding abruptly at some variable time in each trial. Participants 
seldom respond early in the trial, then abruptly start rapidly  responding. When 
food is not delivered, participants abruptly lower their response rate again 
(called the “break-run-break” pattern). This pattern is shown in Figure 6.3. In 
animal studies, where subjects emit many responses in a trial, experimenters 
need to apply change detection algorithms to estimate the trial time in which 
there is an abrupt increase (start time) and an abrupt decrease in response 
rates (stop time; see Church, Meck, & Gibbon 1994). In human studies, the first 
response time can often be treated as the start time and the last response time 
can be treated as the stop time. In the press-release version of this task, the 
press time is the start time, and the release is the stop time. The time between 
the start and stop called the spread, is a trial-by-trial index of timing preci-
sion and their midpoint can be treated as the trial-based timing accuracy. The 
distribution of both the start and stop times can give additional measures of 
timing accuracy and precision (Freestone, MacInnis, & Church 2013). The data 
analysis tutorial that accompanies this chapter implements these analyses.

There are an enormous number of change detection algorithms that can be 
used to estimate the start and stop times. Many of these are  computationally 
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intensive and were not designed to detect changes in hundreds or thousands 
of trials quickly or efficiently. A few change detection algorithms are uniquely 
designed to find the start (and sometimes stop) times in fi schedules. The 
Church, Meck, and Gibbon (1994) method finds the set of transition times 
that maximize the total distance between each segment’s response rate and 
the overall rate. In other words, it finds the response that maximally segments 
the data into low and high response rates. The usual implementation of this 
method is to run through each combination of possible start and stop times 
on every trial and compute the distance metric just described. The computa-
tional cost of this approach is high and depends heavily on the number of tri-
als and number of responses per trial. Gallistel, Fairhurts, and Balsam’s (2004) 
method finds the point that maximizes the distance between the cumulative 
response data and the null hypothesis line connecting the first point to the last. 
This method is computationally fast for detecting the start times, but when 
detecting multiple transitions, the usual implementation is to iterate over the 
responses until a significant change-point is found, then segment the data and 
start over. This reduces the speed of the algorithm, and requires a researcher-
defined significance value for deciding when a change has been found. For 
finding start times, these two methods are conceptually different but math-
ematically identical. They both find the location, where the cumulative re-
siduals against the mean peaks. Framed this way leads to an algorithm that is  
computationally very fast; the start times for thousands of trials can be esti-
mated in less than a second. A more general method is to use the cumulative 
residuals against a regression line, called the ols-cusum algorithm (Ploberger 
& Kramer 1992). These three methods differ for the pi task when both start and 
stop times need to be estimated. More formal methods for jointly estimating 
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Figure 6.3 Example single trial raster plots for Fixed Interval (left) and  
Peak Interval (right) trials for a short 30-minute session for a single  
participant.
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the start and stop times exist, but they are computationally intensive, even for 
a relatively small number of a trials.

Because the Church, Meck, and Gibbon (1994) implementation is still the 
most heavily used, we include it in the accompanying Python code (Just- 
In-Time compiled to be faster; “see the Github repository”). We also include 
an algorithm that combines aspects of the above discussion. We fit a regres-
sion line to the cumulative inter-response times (not the cumulative record), 
and compute the residuals. The minimum residual is the stop time. The start 
time is the maximum residual in the data record up to the stop time. That is, 
start times are conditioned on stop times. This method is computationally ef-
ficient, and seems to do a robust job on our data. It should be noted that any 
algorithm has pros, cons, and edge-cases in which the algorithm fails to find 
reasonable change-points. The experimenter should examine their particular 
results to  assess the degree to which the algorithm provides a good description 
of the data.

2.3.3 Analysis Code
The analysis code uses the Python programming language with the scien-
tific stack, most notably Pandas. Python is used because it is free, open-
source, cross-platform, and includes libraries that allow for quick proto-
typing of the task (PsychoPy). The Pandas package contains a rich set of 
functions that operate on the split-apply-combine framework  (Wickham 
2011). This allows one to write code for a single instance and then apply it 
to groups of data in a single line of code, both maximizing readability and 
 minimizing  errors. The Jupyter Notebook allows for figures, code, and mark-
down/latex text in the same document, effectively creating a human read-
able analysis script. All of the necessary software was downloaded using the 
Python   Anaconda  distribution from Continuum Analytics (https://www 
.continuum.io/). The analysis uses Python (version 3.5), Jupyter Notebook 
(v4.2), Pandas (v0.18), Numpy (v1.10.4), and Matplotlib (v1.5.1). The R program-
ming language with the “tidyverse” ecosystem also implements this analysis 
philosophy, and RStudio includes the ability to integrate figures, code, and text 
into a notebook.

The code that analyzes the pi task is called “Peak_Analysis.ipynb.” It renders 
as html in the browser, but can be used as an analysis script when download-
ed. It shows the stages of analysis from start to finish: from loading in the data, 
to data wrangling (cleaning) to analysis. The outputs are figures and tables. It 
shows both the averaged and single trial analysis methods discussed in this 
chapter.
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3 Switch Procedure

3.1 Background
The switch procedure, rooted in the free-operant temporal discrimination 
task Platt and Davis (1983), is closely related to the pi procedure described 
above and the temporal bisection task (Chapter 5, this volume). The tempo-
ral  bisection task is arguably one of the most commonly used procedures in 
the study of temporal judgments of humans and non-human animals (Church 
& Deluty 1977; Allan & Gibbon 1991; Wearden, 1991). In this temporal bisec-
tion task, participants are initially trained to discriminate two reference in-
tervals as short and long (e.g., 200 and 800 ms). Once the participants learn 
to discriminate accurately (e.g., 85% correct), intermediate durations are 
presented intermixed with the reference durations. Participants are asked to 
classify these durations as short or long depending on their subjective simi-
larity to the  reference  durations. No feedback is provided for the categoriza-
tion of intermediate intervals to avoid explicitly training them on intermediate  
intervals.

Experimenters can estimate both timing precision and the point of subjec-
tive equality (the interval that participants judge as equally distant from the 
referents) by fitting a logistic function to the participant’s trial-by-trial choices 
to predict the proportion of long responses as a function of test durations. (see 
Chapter 5, this volume). Although the responses are emitted after the termina-
tion of the timing stimulus in the temporal bisection task, recent work showed 
that both human and non-human decision processes actually evolve dynami-
cally during the timing stimulus (e.g., Balcı & Simen, 2014; Machado & Keen 
2003).

The switch task was developed specifically to capture this dynamically 
evolving belief state (Balcı et al. 2008, 2009; Kheifets & Gallistel 2012; Kheifets, 
Freestone, & Gallistel, 2017). This Switch task is the prospective analogue of the 
temporal bisection task in which participants behaviorally invest in the “short” 
and “long” latency options freely over the course of the trial (during the stimu-
lus). In this task, only the referent durations are presented. The participants 
are reinforced for “catching” the reinforcement at the right location at the right 
time. For example, a mouse will be reinforced for poking its nose into the left 
port at or after short trials, and reinforced for poking its nose into the right 
port at or after long trials. The mice do not know in advance whether it is a 
short or long trial, they learn to switch from the short to the long port between 
the intervals in order to catch the reinforcer no matter the trial type. Humans 
may be asked to hold down the left key and then switch to the right when they 
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believe the short duration has elapsed without reinforcement. This allows the 
experimenter to observe, on an individual trial, when the belief state of the 
participant switches from short to long. In other words, instead of estimating 
the pse from binary response data, the criterion is directly measured trial-by-
trial via the switch times. Below, we present the procedural implementation 
and analysis for this task.

3.2 Procedural Details
Participants are trained to anticipate the reinforcement at two different loca-
tions associated with two different intervals (short and long). These are often 
two different feeding hoppers located at two different sides of the operant 
chamber in animals and visual targets presented at two different sides of the 
computer screen in humans. In a given trial, only one of these options is active. 
The active option is not signaled to the participants; they can only rely on the 
elapsed time to guide their responding. After experiencing the task parameters 
in the first trials/sessions, participants often begin at the short location and 
switch to the long location once they believe the short duration has elapsed 
without reinforcement. This switch time is the main unit of analysis. In hu-
man experiments, participants indicate their choices by pressing one key to 
indicate their preference for the short option and a second key to indicate their 
preference for the long option.

3.3 Procedure Code
As before, the task was written using PsychoPy (version 1.83.03), and is available 
on our Github page. When the program loads, it reads a file “Switch_session 
_information.csv” that specifies the task parameters like the short and long 
durations, payoffs, and probabilities, along with parameters like the session 
duration and break duration.

The critical PsychoPy routine is shown in the bottom panel of Figure 6.2, 
and is described by the procedure schematic in the top panel. A trial consists 
of a keyboard component (for responses), two shape components (to give 
visual feedback about which response is currently being recorded), two text 
components (one that controls the fixation cue that starts the trial and one 
that keeps track of the participant’s total score), interstimulus interval (isi; 
duration without any stimuli drawn from a uniform interval between 0.5 and 
1.5 seconds), and a code component. The code component draws a trial type 
(short or long), and records whether or not the final response was correct.

3.4 Data Processing and Analysis
The trial time at which the participant leaves the short latency option for the 
long latency option is calculated for each trial. The switch latencies aggregated 
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across multiple long-latency trials are nearly normally distributed. The mean 
(or median) switch time can be treated as the pse, whereas the coefficient of 
variation (or interquartile range) of the switch times can be treated as an index 
of precision in temporal judgments. Note that only the data from the long-
latency trials are used in the analysis since participants often do not switch on 
short trials (they shouldn’t). The primary advantage of the switch task over the 
temporal bisection task is that the belief state of the participant can be evalu-
ated in real time rather than being evaluated at arbitrarily chosen  decision 

Figure 6.4 The switch task. Top: A schematic of the task. Bottom: The PsychoPy builder  
screenshot of the trial.
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points (i.e., test durations). Figure 6.5 shows about 40 switch times for a single 
participant.

Although it applies more to the data gathered from animals, another ad-
vantage of the switch task over temporal bisection task is that the data gath-
ered from the switch task allows the experimenter to treat responses that 
originate from timed vs. non-timing processes separately. It is fairly common 
to observe an exponential (impulsive) component in the switch latencies in 
addition to the normally distributed data in animals (Balcı et al. 2009; Khefi-
ets & Gallistel, 2012). Fitting mixture distributions (e.g., exponential normal 
mixture distribution) to switch latencies allows the experimenter to work 
only with the data that come from trials with temporal control over respond-
ing. This is simply not achievable with the temporal bisection task. The tuto-
rial that accompanies this chapter allows the readers to easily conduct these  
analyses.

3.5 Optimality Analysis
Statistical decision theory gives an optimal reinforcement-maximizing strat-
egy on this task. There are three  important factors that determine the expected 
reinforcement attained in the switch task: (1) the probability of four different 
outcomes (correctly and incorrectly switching on short and long trials), (2) the 
payoffs associated with those four different outcomes and (3) the probability 
that a short or long trial will occur. The expected gain in this task is the dot 
(scalar) product of these vectors; namely the sum of payoffs associated with 
four different outcomes weighted by the joint probability of the correspond-
ing outcomes. This expected value is computed at every moment in time. 
The switch time that maximizes the expected reinforcement depends on the 
level of timing precision (often measured by the coefficient of variation). The 
optimal switch time depends on timing precision because timing variability 
 determines the probability of switching between the short and the long in-
tervals. Worse timers should switch earlier. The tutorial that accompanies this 
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Figure 6.5
Example switch times from a  
participant on the switch procedure.  
The short duration was 2 s and the long 
duration was 3 s.
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chapter allows the readers to conduct the optimality analysis of the data gath-
ered from the switch task.

3.6 Analysis Code
The analysis code is contained in “Switch_Analysis.ipynb” on our Github re-
pository. It walks the user through the stages of analysis, from reading in the 
data file to assessing optimality in the participants. A detailed mathematical 
treatment of the optimal solution accompanies its implementation. Briefly, 
it is possible to construct performance curves that specify the expected rein-
forcement for any given response mean switch time. Three example curves are 
given in Figure 6.6. Each curve shows a different level of timing precision. A 
coefficient of variation of 0.20 (blue curve), for example, means that most of 
the switches on long trials will be within about 20% of the mean switch time. 
The optimal time to switch from the short to the long location is when this 
curve peaks. Notice that as timing precision grows (from the blue to the red to 
the orange curve), the peak of the curve shifts earlier. The black line shows the 
optimal performance curve –the curve that specifies what the optimal switch 
time should be for any given level of timing precision.

From here, experimenters can assess the degree to which their participants 
are optimal: find the optimal switch time for each participant (because their 
timing precision varies), and then compare it to their actual mean switch time. 
Figure 6.7 shows two such comparisons. First, how closely the participants 
match the optimal switch time as the ratio of the actual to the optimal switch 
time. (left), and second, how much  reinforcement they earn compared to what 
they would earn if they were optimal, again as a ratio (Balcı, Freestone, & Gal-
listel 2009 see also Freestone et al. 2015).
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Figure 6.6 Example performance curves for the switch task. The black optimal performance 
curve shows that the optimal switch time decreases as the coefficient of variation 
increases.
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4 The Differential Reinforcement of Low Rates Procedure

4.1 Background
The drl procedure has been widely used in psychopharmacological animal 
studies because it is sensitive to anti-depressant pharmacological agents (e.g., 
Paterson et al. 2011). This task requires participants to wait some amount of 
time before a response will be reinforced, early responses reset the clock. 
That is, the drl task requires  participants to withhold responding for at least 
a fixed interval. Responses after this fixed interval are reinforced, responses 
earlier than this fixed interval are not  reinforced. Both types of responses reset  
clock. For instance, in a drl-20s schedule, the minimum wait time since the 
previous response is set to 20 s. Typically, the average inter-response time in 
this task is longer than the drl schedule, and roughly positioned to maximize 
reinforcement rate (Balcı et al. 2011; Çavdaroğlu et al. 2014; Freestone, Balcı,  
Simen, & Church 2015; Wearden 1990).

4.2 Procedural Details
The implementation of this task in humans is fairly straightforward. Partici-
pants are presented with a stimulus in the middle of the computer screen. They 
can be instructed to wait for a minimum interval since their  previous response 
before responding again. The minimum interval can be presented at the begin-
ning of the test session for brief training. In other versions of the task, instruc-
tions are not provided. If the participant does not wait long enough  before 
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Figure 6.7 Example ways of assessing optimality in participants. Notice the y-limits start  
at .90, humans are often very close to optimal on this task.
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responding, the stimulus can turn red briefly, whereas if they have waited for 
the minimum interval, the stimulus can turn green briefly, both to indicate the 
outcome of their response.

4.3 Procedure Code
When the experiment starts, it reads the file “drl_session_information.csv,” 
which contains the task parameters like the drl interval, the magnitude of 
the reward, the cost of a response, as well as information about the experi-
ment, like the session and break durations. The top panel of Figure 6.8 depicts 
a schematic of the task, the bottom panel shows a screenshot of the PsychoPy 
builder for the experiment, focused on the “drl_task” routine. It contains fixa-
tion and feedback text components, along with a keyboard component for re-
cording responses. A code component keeps track of each inter-response time 
and controls the reinforcement.

4.4 Data Processing and Analysis
The primary unit of analysis in the drl task is the inter-response time (irt). 
Similar to the Peak procedure, the distributional of irts provide information 
accuracy and precision of timing. In animal data, the irts typically originate 
from two different generative processes leading to a mixture distribution (e.g., 
exponential and an inverse Gaussian). In these cases, the exponential portion 
of the irts is assumed to originate from those responses for which there was no 
temporal control over behavior, and the inverse Gaussian portion of the irts is 
assumed to originate from trials in which the responses were under temporal 
control (the inverse Gaussian distribution). The central tendency relative to 
the drl schedule gives timing accuracy, and the spread gives precision. The 
proportion of inverse Gaussian irts can also be used as an index of the de-
gree of temporal control. These parameters are sensitive to both motivational 
and pharmacological manipulations (Paterson et al., 2011; Doughty & Richards 
2002). In the human data, the proportion of exponentially distributed irts is 
virtually zero after training, showing that humans have stronger temporal con-
trol over their waiting behavior. Consequently, often fitting a single distribu-
tion to human irts is sufficient to estimate the parameters of performance. 
Readers can use the tutorial that accompanies this chapter to fit the drl data.

4.5 Optimality Analysis
The mean irts are typically longer than the drl schedule. This is an adaptive 
strategy to maximize reinforcement rate given timing imprecision. Like the 
switch task, it is possible to mathematically describe optimal irts  depending 
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on the level of the timing precision (e.g., Çavdaroğlu et al. 2014; Freestone, 
Balcı, Simen, & Church, 2015). To a first approximation, the worse the timer, 
the later they should aim.

The reinforcement rate in this task is the the probability of reinforce-
ment divided by the time to reinforcement. That is, it’s the probability that 
an  inter-response time is later than the drl schedule divided by the average  
inter-response time. (p(r; , )/ )γm m m . As the participants aim to wait longer, 
the numerator of this ratio – the probability of a  reinforcement – increases. 
The denominator – the time cost – also increases. The longer they wait, the 
more likely they are to be reinforced, but the longer they have to wait for rein-
forcement. The reinforcement rate maximizing (i.e., optimal) inter-response 
time finds the balance between these two time varying quantities. The tutorial 
accompanying this chapter allows the reader to conduct the optimality analy-
sis of data gathered from the drl task.

Figure 6.8 The drl Task. Top: A schematic of the drl task. Bottom: A screenshot of the  
PsychoPy builder used to run the task.
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Figure 6.9 Example inter-response times for a single human participant on the drl task. The 
left panel shows every inter-response time in a scatter plot, and the right panel shows 
the histogram.

4.6 Analysis Code
The analysis code on our Github page is called “drl_Analysis.ipynb.” It walks 
the user through the analysis up to assessing optimality in the participants, 
and generating figures. A detailed mathematical treatment of the optimal so-
lution accompanies its implementation.

5 Conclusions

In this chapter, we have introduced three different timing procedures that are 
equally applicable to humans and animals. The pi procedure is a widely used 
timing task that has provided valuable information regarding the nature of the 
generative psychological (e.g., Church, Meck & Gibbon, 1994; Gibbon & Church 
1990), and neurobiological processes (e.g., Meck 2006) that underlie interval 
timing. For instance, the “break-run-break” pattern of responding in individual 
trials (as well as other derived quantities such as the middle time and spread) 
provide insights regarding the possible sources of noise in the timing behavior. 
The switch procedure allows the experimenters to track the evolving temporal 
belief state of the individuals in each trial. This procedure is particularly well-
suited to study how quanties like probabilities and payoffs change timing be-
havior. When it is coupled with the participant’s level of timing precision, one 
can apply statistical decision theory to obtain the optimal response against 
which the actual data can be compared. Finally, the drl task is ideal for the 
study of timed inhibitory control. Performance on this task can also be com-
pared against the optimal response times, and reinforcement-rate maximizing 
wait time is determined purely by timing precision.
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chapter 7

Towards a Process Model of Temporal 
Generalization

Florian Klapproth

1 Introduction

There are just a few studies concerned with response time in stimulus gener-
alization. For example, Pierrel and Murray (1963) showed that when people 
compared a given standard with stimuli differing from the standard only in 
weight magnitude, the decision time increased the smaller the difference was 
between the standard and the comparison stimulus. Desiderato (1964) pre-
sented participants with stimuli repeatedly after a 12-s interstimulus interval in 
the training phase. The participants were required to release a button as soon 
as they experienced the stimuli. In the subsequent testing phase, the same 
stimuli were presented after intervals that were either shorter than,  longer 
than, or the same as the initial 12-s interstimulus interval. The time it took to 
release the finger from the button increased as a function of the difference be-
tween the standard and the comparison intervals. The task that was applied by 
Desiderato is commonly called a temporal-generalization task.

In temporal generalization, the participants are usually presented with a 
standard duration after which a series of stimuli of different durations follows, 
and the participant’s task is to judge whether each of the successive durations 
matches the standard duration or not, by making a same or different response. 
A typical result is that on most of the trials when it is presented the standard 
duration is reliably identified (that is, a same response is given). On some tri-
als, however, people will make a same judgment even though a non-standard 
duration had been presented. Hence, people are likely to generalize a same 
judgment to stimuli that are shorter or longer than the standard, and the prob-
ability of making a same response after the presentation of a  non-standard 
comparison stimulus increases as the difference between the non-standard 
comparison and the standard itself becomes smaller. When plotting the pro-
portions of same responses against the stimulus durations presented a gradient 
of generalization will result. The steeper the gradient is, the more  accurately 
the participants have identified the standard amongst the other durations 
of the series. Usually, the gradient is slightly asymmetrical, with more same 
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responses occurring at stimuli longer than the standard (e.g., Wearden, 1992; 
Wearden, Denovan, Fakhri, & Haworth, 1997; Weisman et al., 1999).

When comparing the standard duration with a comparison duration in a 
temporal-generalization task, people are supposed to relate the durations in 
a way suggested by Wearden (1992). Wearden assumed that people decide for 
the sameness of both intervals if abs(s-t) /t < b, with s being the standard dura-
tion, t being the comparison duration, and b representing a decision threshold. 
Wearden found that a decision according to that rule fitted empirical data to 
a high degree of precision, when s and b were variables with random error, 
but with fixed mean and standard deviation, and t was an error-free variable, 
changing its value only depending on the comparison duration.

The selection of the parameters used in the Wearden’s (1992) model was in-
spired by the scalar timing theory (Gibbon & Church, 1984; Gibbon, Church, & 
Meck, 1984), which offers an information processing model of the timing pro-
cesses in humans and animals. The model comprises a clock stage, a memory 
stage, and a comparison stage. It assumes that when the duration of a stimulus 
has to be judged, a clock-like mechanism produces pulses, and these pulses 
are added and temporarily stored in an accumulator. The number of pulses 
summed in the accumulator represents the duration to be judged. When an 
interval is regarded as important (like the standard in a temporal generaliza-
tion task), it should not only be stored temporarily, but for a longer period (at 
least for the duration of the task at hand). To account for this, the scalar timing 
theory posits a longer-term (or reference) memory. When making a compari-
son between the standard and a just-presented duration, the scalar timing the-
ory presumes that a sample of the standard represented in reference memory 
enters the comparison stage and is related to the current comparison interval. 
The representation of the standard is assumed to be noisy, so that it may vary 
from trial to trial due to variations in encoding the standard or as a result of 
transferring the standard to the comparison stage (Gallistel & Gibbon, 2000; 
Gibbon, 1991).

The scalar timing theory specifies the stages that temporal information 
has to pass through before a decision can be made. However, the model does 
not describe or predict the time one needs to make a temporal decision. An 
attempt to characterize the time course of temporal decisions was made by 
Klapproth and Müller (2008). In their experiments, participants carried out 
a temporal generalization task, where one group was encouraged to make a 
temporal judgment as quickly as possible, whereas the other group was not 
instructed to make a fast judgment. Klapproth and Müller were interested in 
investigating the relationship between the duration of the comparison stimuli 
and the timing of the participants’ responses, and they expected that when the 
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speed of responses is emphasized, it would result in reliable estimates of the 
time needed to judge the duration of a stimulus.

2 A Theoretical Model for Response Times in Temporal 
Generalization

Klapproth and Müller (2008) suggested a model of the relationship between 
abs(s - t)/t, the response time (rt), and the stimulus duration (t), which is de-
picted in Figure 7.1. Response time is defined as the interval between stimulus 
onset and the participant’s response.

The time of the decision, and, hence, the response time (rt) for a correct de-
cision, can be predicted by the relation of the ratio abs(s - t)/t to the criterion b.  
The ratio abs(s - t)/t decreases as the duration of the stimulus presentation (T) 
increases, and reaches a minimum at the instant TS, where t = s. A further in-
crease of the stimulus duration T would cause an increase of abs(s - t)/t which 
eventually approximates 1, since the longer t is, the more similar will be the 
numerator and the denominator of the ratio. As can be seen in Figure 7.1, the 
function f(T) = abs(s - t)/t crosses the threshold b twice. The interval between 
the two points of intersection, (T1; b) and (T2; b), marks the duration values for 
which a same response is expected to occur

Stimulus duration (T)

abs (s-t)/t

RT

Figure 7.� The relation between abs(s – t)/t, response time (rt), and stimulus duration (T).  
The dotted curved line represents abs(s – t)/t as a function of T, the solid line  
represents the response times as a function of T, and the vertical lines represent  
the time values T1 and T2. The horizontal dotted line shows b.
Modified after Klapproth and Müller (�008).
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Response times for same responses should increase with increasing stimu-
lus duration, as the participants cannot make a same decision until after the 
stimulus has ended, because the stimulus might always go on for longer. For 
different responses, this is true up until the standard duration (plus some ad-
ditional time) has been arrived at, then response times should flatten out, as 
the participant may have enough information to make the response before the 
entire stimulus has ended.

Based on these assumptions, Klapproth and Müller (2008) proposed a tem-
poral decision rule according to which a decision for the sameness of two in-
tervals is expected if T1 ≤ T ≤ T2, where T is the duration of the stimulus just 
presented. A decision for the difference between two intervals is expected if 
T < T1 or T > T2. At T1, t is smaller than s, so that t(T1) = s/(1 + b), where t(T1) is 
the mental representation of T1. The reverse relation between t and s can be 
observed at T2, where t > s, so that t(T2) = s/(1 – b).

The response times should be linearly related to the stimulus duration for 
stimulus durations that are shorter than or equal to T2, whereas it was pre-
sumed that constant response latencies should occur for durations that are 
longer than T2. Similar assumptions have been made, for instance, by Balcı and 
Simen (2014)

2.1 Gradients of Temporal Generalization
In the study conducted by Klapproth and Müller (2008) both proportions of 
same responses as well as response times were recorded and analyzed. The 
gradients depicted below (Figure 7.2) reflect the proportions of same re-
sponses obtained at different stimulus durations in the first experiment of this  
study. The standard stimulus duration was 1000 ms. When the participants 
 responded quickly, a leftward shift of the gradient occurred, compared to 
the gradient  obtained from the participants who were not urged to respond 
quickly.

Klapproth and Müller (2008) presumed that the leftward shift of the gradi-
ent was the result of a change of the standard represented in memory due 
to the truncation of the longest intervals of the series at hand, and referred 
to the adaptation-level theory (Helson, 1948, 1964; Thomas, 1993) as a poten-
tial source of explanation of the gradient’s shift. According to this theory, the 
mean value of all stimulus durations presented within an experiment provides 
a frame of reference for making a decision about the duration of each compari-
son stimulus. In temporal-generalization tasks normally used, the mean of all 
durations equals (or is near to) the standard duration. In the speed conditions 
of the Klapproth and Müller (2008) study, however, the participants may not 
have perceived the full duration of the longest comparison stimuli of the series 
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 because they were able to make a response prior to the cessation of these long 
stimuli. Therefore, the mean of the durations experienced by the participants 
may have been smaller in the speed conditions than in the control conditions. 
Klapproth and Müller concluded that the participants in the speed conditions 
related the comparison durations not to the standard itself but to the mean 
of all experienced durations, a value which apparently was smaller than the 
nominal standard duration. Hence, the gradient of the speed conditions had a 
leftward shift, whereas the gradient of the control conditions was not shifted.

2.2 Response Times
The response times were much shorter in the speed groups than in the control 
groups, and the time taken for same responses increased linearly with stimulus 
duration, whereas the time taken for different responses grew proportionally 
with stimulus duration but then remained approximately constant at  stimulus 
durations longer than the standard. Figure 7.3 shows the standardized response 
times obtained from the Klapproth and Müller (2008) experiments. Standard-
ized response times were response times minus the intercept of the linear  
regression of  response times, divided by the standard duration. In the Klap-
proth and Müller study, the standard durations used were 750, 1000, and 1250 
ms. The standardization has therefore resulted in response times that were 
close to the identity line (which is, in Figure 7.3, the dotted diagonal), and  
response times would have been larger without standardization.

However, some unexpected deviations from the predicted rt model oc-
curred. First, same responses at the longest durations were given faster than 
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Figure 7.� Temporal generalization gradients obtained from Experiment 1  
of the Klapproth and Müller (2008) study.
Modified after Klapproth and Müller (�008).
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Figure 7.3 Standardized response times, plotted against comparison stimulus duration  
divided by the corresponding standard. Data are shown separately for the  
conditions with the 750, 1000, and 1250 ms standard. The dotted grey line in the  
background represents the expected standardized rt. Upper panel: response times 
for “same” responses; lower panel: response times for “different” responses.
Modified after Klapproth and Müller (�008).
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same responses at shorter durations. This might have been done because these 
responses were merely “fast guesses”. Moreover, the number of same responses 
given at the longest durations was quite small, so that the data points at these 
durations were rather unreliable (and, therefore, might not reflect a stable 
trend). Second, different responses were somewhat slower than same respons-
es before the turning point (T2) occurred. According to the literature pertinent 
to this phenomenon (see, for example, Farrell, 1985), I will call this result a 
fast-same effect.

2.3 The Fast-same Effect
How could same responses be faster than different responses? This is an “old” 
question since there are quite a lot of results and models being related to this 
question, of which some have been proven to be more successful than others 
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(Farell, 1985). For example, fast-same responses have been discussed as a mat-
ter of encoding facilitation (Nickerson, 1975; Posner, Klein, Summers, & Bug-
gie, 1973; Posner & Snyder, 1975). The time taken to process a stimulus might 
depend not only on the stimulus presented, but also on preceding stimuli. In 
particular, stimulus repetition might facilitate the encoding of latter occur-
rences of that stimulus, perhaps by priming neural pathways. Since in tempo-
ral generalization (and, in particular, in the experiments we conducted) the 
target stimulus (i.e., the standard) had been presented more frequently than 
other stimuli, encoding facilitation might be a cause for the fast-same effect 
observed. However, in our experiments fast-same responses were given mainly 
at intervals shorter than the initial standard, and repetition of the standard 
would not have facilitated the encoding of stimuli shorter than the standard.

According to Krueger’s noisy-operator model (Krueger, 1978), comparing a 
test stimulus with a target might involve counting the mismatches between a 
number of stimulus attributes. Due to noise in the comparison process, some 
mismatch counts are indecisive, leading to a rechecking process. The prob-
ability of rechecking is supposed to be greater for different responses than for 
same responses, thus different response times will on average be longer same 
response times. However, in temporal generalization, only one feature (the du-
ration) is relevant for comparison.

Despite there being some approaches aiming at explaining the fast-same 
effect, there seems to be no explaining model that especially covers this phe-
nomenon with timing data. My approach to resolve this problem is based on 
fairly simple assumptions. The first assumption is that response time depends 
on the subjective probability for an event to occur in choice tasks. The more 
likely an event is to occur, the more “prepared” should a participant be, the 
higher should be his or her “readiness” to respond to that event.

Figure 7.4 illustrates the probability model. Suppose there are two alter-
natives a participant has to select from, for example, the choice between a 
same response and a different response. In temporal generalization, the ini-
tial (subjective) probability for the occurrence of the standard (and, hence, 
for responding with same) is approximately the same as the probability for 
a different response, for the frequency of standard and non-standard stimuli 
presented to the participant is more or less equal. As time goes by, that is, as 
the stimulus is being presented, the probability for a same response increases 
whereas it decreases for a different response. The reason is as follows: short 
durations are no longer subject of choice when the stimulus presentation has 
passed those durations. Hence, the number of non-standards that still can be 
chosen reduces as the stimulus presentation prolongs. The probability for a 
same response grows to its maximum when the presented duration equals the 
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(subjective) standard duration, t = s*. After that instant, the probability for a 
same response decreases rapidly and reaches its minimum (p = 0) shortly after 
passing the threshold T2.

With respect to subjective probability, the speed of responding with same 
should increase the closer the current duration is to s*. Accordingly, the speed 
of responding with different should decrease. As can be inferred from Figure 7.4, 
same responses ought to be faster than different responses for intervals shorter 
than the (subjective) standard. Whereas they should be fairly equal at very 
short durations, our data suggest that even at very short intervals (e.g., 100 ms), 
the same-different difference occurred. How could this finding be explained?

The answer may lie in the “dynamic nature” of s*, which leads to my sec-
ond assumption (see Figure 7.5). The scalar timing theory suggests that same 
responses are made when t = s*. If s* < s, same responses will be made at du-
rations shorter than the standard. That is, same responses made at intervals 
shorter than the standard (even at very short intervals) might be done because 
in those trials the subjective value of the standard was very small, too. Different 
responses, however, do not “need” a change of the value of s* to be executed at 
short intervals. They can be made even if s* = s.

According to the probability model, both same responses and different re-
sponses can be sped due to the increased “preparedness” of the participant. 
Consider first the case that a same response is given which should happen 
when t = s*. The line indicating same responses in Figure 7.5 shows that the 
subjective probability for a same response is higher than that for a different 
response. Thus, response time will be relatively short. Now imagine that the 
participant’s memory sample of the standard is the same but the current inter-
val is longer than s*. As can be seen in Figure 7.5, the subjective probability for 
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Figure 7.4 A model of subjective probability of same or different responses in temporal  
generalization, dependent on the duration of the comparison interval t.

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



�57Process Model of Temporal Generalization

<UN>

Figure 7.5 The development of subjective probability of same or different responses in temporal 
generalization, dependent on the mental representation of the standard duration s*.
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a same response will decrease and—accordingly—will increase for a different 
response. In that case, a different response will occur which is made rapidly be-
cause it is considered to be very likely. (This would also be the case when inter-
vals longer than the subjective standard are truncated.) Now suppose a third 
case in which the current interval is shorter than the subjective standard s*. 
A different response would occur which takes more time to be executed than 
a same response would do at the same interval, for a same response should be 
expected to a higher degree than a different response.

This example illustrates that there might be three classes of responses: 
fast-same responses, fast-different responses, and slow-different responses. 
 Fast-same responses should be made when t = s*, fast-different responses 
should be made when t > s*, and slow-different responses should be made 
when t < s*. To yield a fast-same effect, fast-same responses must overweigh 
fast-different responses (i.e., same responses must on average be faster than 
different responses given at a certain stimulus duration).

Compared to different responses, same responses were observed to need 
more time to be given at intervals larger than the standard. This was presum-
ably the case because different responses could be made without completely 
processing stimulus duration of larger intervals whereas same responses could 
be made only after the whole stimulus was experienced. Therefore, the fast-
same effect was observed only for intervals shorter than the standard.

2.4 Another Experiment
In an experiment conducted by Klapproth and Wearden (2011), a temporal-
generalization task was used where the standard duration was not at the cen-
ter of all durations presented, but either the smallest or the largest value of 
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the durations. The participants were assigned to four conditions, half of which 
were speed conditions, the remaining half control conditions. It was expected 
that only durations longer than the standard were truncated when participants 
were urged to respond quickly. Therefore, a shift should occur only in the speed 
condition with long durations and not in the speed condition with short dura-
tions. Figure 7.6 shows the gradients obtained from the Klapproth and Wearden 
experiment (dark-grey: speed conditions; light-grey: accuracy conditions).

As hypothesized, a shift of the gradients towards shorter durations only 
occurred when the participants were presented with stimulus durations that 
were either the same as or longer than the standard duration. However, when 
comparison durations were shorter than or equal to the standard, no shift was 
observed. Therefore, experiencing stimulus durations that are longer than the 
standard appears to be necessary to produce the shift in response gradients 
during temporal generalization under time pressure. Figure 7.7 shows the re-
sponse times obtained from this experiment.

As Figure 7.7 shows, response times for same responses increased linearly 
with stimulus duration, with some deviations from linearity occurring at the 
shortest and longest stimulus duration which might be considered outliers 
since each of these data points represented only a few responses (1 or 3, respec-
tively). Like with the response times of the Klapproth and Müller (2008) exper-
iment, different responses increased up to a certain point and then  maintained 
their amount. What is striking here is that response times of the “short” condi-
tion were apparently longer at the 1000 ms duration than response times of the 
“long” condition. This was true for both same responses and different respons-
es. In regard to the same responses, however, the difference in response times 

Figure 7.6
Temporal-generalization gradients  
obtained from Experiment 2 of the  
Klapproth and Wearden (2011) study.
Modified after Klapproth and 
Wearden (�0��).
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between both conditions was not statistically significant, t(28) = 1.93, p = .07, 
d = 0.81. Yet, the difference between the “short” and the “long” condition with 
respect to different responses was much more substantial, t(26) = 3.73, p < .001, 
d = 1.41. The turning point at which response times changed from increasing 
to keeping their value constant occurred earlier in the “short” condition than 
in the “long” condition. This might be attributed to a difference in s* between 
both conditions. Remember that in the “long” condition longer intervals had 
been experienced than in the “short” condition (although the longest might 
have been truncated). According to the adaptation-level theory, the reference 
value for comparisons with current duration values should be larger in the 
“long” condition than in the “short” condition. Therefore, the instant to make 
a different response at intervals larger than the subjective standard should be 
later in the “long” condition than in the “short” condition.

Furthermore, the fast-same effect observed in the Klapproth and Mül-
ler (2008) experiment did not occur in this experiment (except for the few 
data points at the shortest duration). On the contrary, different responses in 
the “long” condition were on average faster than same responses, whereas in 
the “short” condition, same and different responses were approximately of the 
same speed. This finding might be explained by assuming that intervals longer 
than the standard were truncated and therefore less time was needed to make 
a different response than to make a same response. For the “short” condition, 

Figure 7.7
Mean latencies of same and different 
responses in Experiment 2 of the Klapproth 
and Wearden (2011) study. In the “short” 
condition, intervals ranging from 250 to 
1000 ms were presented, in the “long”  
condition, intervals ranging from 1000 to 
1750 ms were presented. 
Modified after Klapproth and 
Wearden (�0��).Stimulus duration (ms)
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however, this explanation is not feasible since there was no interval longer 
than the standard. However, the probability model seems to be suitable for 
explaining the data from the “short” condition quite well. In this condition, s* 
should vary only between s and zero, that is, it is not supposed to be larger than 
s. Consider now the case that a different response is made when the standard 
is presented. This would only be possible if s* is smaller than s. According to 
the model, fast-different responses are given when t > s*, hence, different re-
sponses at t = s should always be fast responses. The next case that is worth to 
be looked at is when a different response is made at an interval shorter than 
the standard. In that case, s* is either longer than the current interval or short-
er. If it is longer, a slow-different response would occur, if it is shorter, a fast-
different response would occur. Although the former case is more likely than 
the latter one, a mixture of fast and slow responses is expected which might 
contribute to a rather small discrepancy between the latencies of same and 
different responses.

3 Challenges for Scalar Timing Theory?

According to the scalar timing theory, a same response will be given if abs(s – 
t) / t < b. The results of the speeded temporal-generalization experiments put 
forward the following question: How do the values of the representation of the 
standard duration, s*, the representation of the presented duration, t, and the 
decision threshold, b, change when the participants make temporal judgments 
as quickly as possible?

3.1 Changes of s
From the experiments my colleagues and I conducted, it was inferred that the 
peak shift in temporal generalization under time pressure was presumably al-
tered by the truncation of the longest stimuli of the series of stimulus dura-
tions. It was suggested that this truncation lowered the reference value of the 
standard duration. Thus, the s-value that was used for comparison with the 
current duration was not the same than the initial value of s. The experiments 
therefore suggest that s cannot be simply regarded as the standard duration 
that is presented prior to the test trials or even within every test trial, but in-
stead s must be seen as a value that is strongly dependent on other durations 
that are experienced by the subject.

3.2 Changes of t
The t-value corresponds to the current duration, which is compared with the 
standard duration. However, it was shown that only durations smaller than or 
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equal to the standard duration were fully considered for comparison. Com-
parison durations longer than the standard had presumably been truncated 
through premature responding. Therefore, the value of t is not the same as the 
duration of the current interval, as long as the duration is larger than the stan-
dard. Instead, the maximum value of t is supposed to be somewhat larger than 
the standard (according to the Klapproth and Müller, 2008, model: tmax = s/1-b). 
Since tmax is determined by the standard, and since intervals will be truncated 
after they had been presented for some time longer than the standard dura-
tion, the truncation in turn affects the value of tmax, which is supposed to de-
crease when long stimuli are not experienced in their full length.

3.3 Changes of b
It has also been suggested that there is a special relationship between the b-
value and response time. In one of their experiments, Klapproth and Wearden 
(2011) increased the difficulty of the generalization task by decreasing the 
stimulus spacing. As a result, the participants improved their discrimination 
performance and produced steeper gradients. According to the scalar timing 
theory, this should have been done through adapting a strict decision criterion, 
which corresponds to a rather low value of b. Moreover, in this experiment the 
participants not only made their decisions more precisely, but made them also 
more quickly. This seems counterintuitive at first glance, but is suitable to the 
model proposed for decision times in temporal generalization (Figure 7.1). In 
this model, the time to make a different response at long intervals is directly re-
lated to b: the larger the value of b, the longer participants will need to make a 
different decision. This would also imply that large values of b will allow larger 
intervals to be completely perceived than will small values of b. Therefore, the 
larger b is, the smaller the truncation effect will be, and hence, the smaller will 
be the gradient’s shift. Figure 7.8 illustrates the interdependency of premature 
responding and the alterations of the main parameters of the scalar timing 
theory.

4 Conclusion

What can we conclude from the findings reported in this chapter? First of all, 
the results imply that when intervals have to be judged within an experiment, 
the standard s that is used for the comparative judgments seems to be not a 
fixed value, but rather dynamic. Its dynamic character results from all stimulus 
durations presented within the experiment, from which the mean of durations 
is supposed to form the reference duration. This “dynamic”  representation of 
the reference duration has several implications for the judgment  of  subsequent 

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



Klapproth�6�

<UN>

(comparison) durations, and also for the scalar timing theory which often 
serves as a theoretical framework for comparative duration judgments. Ac-
cording to the scalar timing theory, duration judgments depend on at least 
three components of the judgment process, which are the reference (or stan-
dard) duration s, the to-be-judged (or comparison) duration t, and a decision 
threshold b. Since the value of s depends on durations that were previously en-
countered within or across experimental trials, comparison durations would 
be judged as being larger, the shorter the previously encountered durations 
are. When individuals are encouraged to respond as quickly as possible, trun-
cation of long comparison durations is likely to occur (resulting in a “shorten-
ing” of the encountered durations) so that subsequent comparison durations 
will be judged as being longer than they would be if the individuals take all 
time they need to make their judgments. As the standard s depends on previ-
ous comparisons, and subsequent comparisons depend on the value of s, each 
single temporal comparison, where s and t were related to one another, de-
pends on former comparisons and affects later comparisons. This exactly is 
the dynamic nature of the comparison process. The decision process and its 
outcomes are further affected by the decision threshold b, according to which 
a presented interval is categorized as either the standard duration or not the 
standard duration. If an individual applies a “strict” threshold, meaning that 

Figure 7.8 Synopsis of the effects of speeded duration judgment in temporal generalization on 
the timing parameters t, s, and b.
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only small differences between the standard and comparison intervals are ac-
cepted for judging a comparison interval as equaling the standard, it is likely 
that long comparison durations are truncated. The truncation of long inter-
vals, however, will result in lowering the value of the standard and hence in 
overestimation of subsequently presented comparison intervals. However, if 
the decision threshold is rather lax, truncation of comparison intervals is less 
likely, so that the respective standard is rather long, making overestimation of 
comparison intervals also less likely.

References

Balcı, F., & P. Simen (2014). Decision processes in temporal discrimination. Acta Psy-
chologica, 149, 157–168.

Desiderato, O. (1964). Effect of anxiety and stress on reaction time and temporal gener-
alization. Psychological Reports, 14, 51–58.

Farell, B. (1985). Same-different judgments: A review of current controversies in per-
ceptual comparisons. Psychological Bulletin, 98, 419–456.

Gallistel, C.R., & J. Gibbon (2000). Time, rate, and conditioning. Psychological Review, 
107, 289–344.

Gibbon, J. (1991). Origins of scalar timing. Learning and Motivation, 22, 3–38.
Gibbon, J., & R.M. Church (1984). Sources of variance in information processing mod-

els of timing. In Roitblat, H.L., T.G. Bever, & H.S. Terrace (Eds.), Animal cognition 
(pp. 465–488). Hillsdale, nj: Lawrence Erlbaum Associates.

Gibbon, J., R.M. Church, & W.H. Meck (1984). Scalar timing in memory. In Gibbon, J. & 
L.G. Allan (Eds.), Timing and time perception (pp. 52–77). New York, ny: New York 
Academy of Sciences.

Helson, H. (1948). Adaptation-level as a basis for a quantitative theory of frames of 
reference. Psychological Review, 55, 297–313.

Helson, H. (1964). Adaptation-level theory. New York, ny: Harper & Row.
Klapproth, F., & M. Müller (2008). Temporal generalization under time pressure in hu-

mans. Quarterly Journal of Experimental Psychology, 61, 588–600.
Klapproth, F., & J.H. Wearden (2011). Why do temporal generalization gradients change 

when people make decisions as quickly as possible? Quarterly Journal of Experimen-
tal Psychology, 64, 1646–1664.

Krueger, L.E. (1978). A theory of perceptual matching. Psychological Review, 85,  
278–304.

Nickerson, R.S. (1975). Effects of correlated and uncorrelated noise on visual pattern 
matching. In Rabbitt, P.M.A. & S. Domic (Eds.), Attention and performance (pp. 655–
668). London: Academic Press,.

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



Klapproth�64

<UN>

Pierrel, R., & C.S. Murray (1963). Some relationships between comparative judgment, 
confidence, and decision-time in weight-lifting. American Journal of Psychology, 76, 
28–38.

Posner, M.I., & C.R.R. Snyder (1975). Facilitation and inhibition in the processing of sig-
nals. In Rabbitt, P.M.A. & S. Domic (Eds.), Attention and performance (pp. 669–682). 
London: Academic Press.

Posner, M.I., R. Klein, J. Summers, & S. Buggie (1973). On the selection of signals. Mem-
ory and Cognition, 1, 2–12.

Thomas, D.R. (1993). A model for adaptation-level effects on stimulus generalization. 
Psychological Review, 100, 658–673.

Wearden, J.H. (1992). Temporal generalization in humans. Journal of Experimental Psy-
chology: Animal Behavior Processes, 18, 134–144.

Wearden, J.H., L. Denovan, M. Fakhri, & R. Haworth (1997). Scalar timing in temporal 
generalization in humans with longer stimulus durations. Journal of Experimental 
Psychology: Animal Behavior Processes, 23, 502–511.

Weisman, R., L. Brownlie, A. Olthof, M. Njegovan, C. Sturdy, & D. Mewhort (1999). Tim-
ing and classifying brief acoustic stimuli by songbirds and humans. Journal of Ex-
perimental Psychology: Animal Behavior Processes, 25, 139–152.

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



<UN>

© patrick simen, ���8 | doi �0.��63/9789004�80�05_009
This is an open access chapter distributed under the terms of the prevailing cc-by-nc License.

chapter 8

Reaction Time Analysis for Interval  
Timing Research

Patrick Simen

1 Introduction: A Space of Timing Models

Reaction times are a rich form of data that has been widely used to understand 
how humans and other animals make simple, two-alternative perceptual dis-
criminations, and how they time intervals. However, statistical techniques for 
analyzing reaction time data have been developed more extensively in the 
case of non-temporal, perceptual decision research than in timing research. 
This chapter describes how to apply reaction time (rt) analysis techniques 
from non-temporal decision research to the temporal domain, and it describes 
Matlab code that can be used to implement these analyses (see book’s GitHub 
repository).

In order to motivate the application of these techniques for interval tim-
ing research, it helps first to consider a simple class of computational models 
of timing, the pacemaker-accumulator (pa) models (Creelman, 1962; Gibbon 
& Church, 1984; Killeen & Fetterman, 1988; Treisman, 1963). Simulating these 
models is interesting in its own right. For the purpose of this chapter, though, 
simulation is merely a tool that allows researchers to generate “fake” reaction 
time data that they can compare against their empirical data, test their intu-
itions, and debug their analysis code.

Importantly, starting with a simple, classic family of timing models also pro-
vides an example of how rt analysis can be used to select the “best” model 
within a class. Model selection is currently a topic of great interest in non-tem-
poral decision research. Furthermore, starting with simulations may also help 
explain why the techniques used in non-temporal decision research have so far 
not reached the same level of use in timing research. That is, in many cases the 
sophistication of these techniques may seem to be wasted on the data in tim-
ing. Timing data, after all, typically has fewer degrees of freedom than decision 
data, as we will describe shortly. However, some examples from the literature 
will serve to illustrate the point that rt analysis can, contrary to this view, be 
extremely helpful in assessing models of timed behavior (e.g., Balci & Simen, 
2014; Simen, Vlasov, & Papadakis, 2016).
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1.1 Fixed Clock-speed Pacemaker-accumulators
We now consider two different types of timing model and ways to simulate 
them, thereby producing fake rt data. We can then apply the rt analysis meth-
ods described in the final section of this chapter to test whether these methods 
can properly determine which model best fits the fake data. This is an impor-
tant step to undertake before applying the methods to real rt data from an 
experiment. If these methods cannot accurately determine which model gen-
erated the data even when we already know the answer, then they will not be 
useful in the real world. For this reason, model simulation should always be the 
first step in vetting a model-fitting procedure. We will restrict our attention in 
this chapter to the most basic and most classical type of timing model: the pa.

pas are just about the simplest possible model of timing. They oper-
ate like a stopwatch, which counts up regular or irregular clock ticks until 
hitting some threshold either for making a decision (such as, whether the 
current interval is longer or shorter than another interval in memory) or 
for producing a response (such as pressing a lever to earn a reinforcement). 
We will refer to these two possibilities as decision and production tasks re-
spectively. There are many possible variations on the basic pa idea,  however, 
and different variations make different predictions, especially about produc-
tion times. rt analysis techniques will therefore be useful in teasing these 
models apart.

Creelman (1962) developed an early pa model in which a source of clock 
pulses emits pulses randomly, at a fixed rate. The time between pulses was ex-
ponentially distributed, making the process of counting them up into a Pois-
son counting model. Since this basic process is central to several of the models 
for which we provide Matlab code, we begin with it. Poisson_countermodel.m 
contains the code in its entirety (see book’s GitHub repository). It generates ex-
ponentially distributed random inter-pulse intervals, then adds them up, and 
checks when their sum has exceeded a threshold.

An important variation on this model allows for changes in pacemaker rate 
across trials, as well as variability in the pulse count threshold across trials. 
Gibbon and Church (1990) considered how these variations could account for 
a problem with Creelman’s model, which is its conflict with a widely observed 
phenomenon in timing known as ‘scalar invariance’. This benchmark phenom-
enon in interval timing research is one in which the standard deviation of re-
membered interval durations appears to grow linearly with the timed duration. 
This pattern yields a constant ratio of the standard deviation divided by the 
mean – a ratio known as the coefficient of variation (cv). Indeed, in produc-
tion tasks, the production time distributions for different durations frequently 
superimpose when the data from different duration-conditions are divided by 
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their means. Creelman’s model, in contrast, predicts decreasing cvs, and, thus, 
increased relative precision, as durations increase. Gibbon (1992) referred to 
this pattern as ‘Poisson timing’ (though as we shall see below, a Poisson timer 
that works on different principles yields perfect scalar invariance).

Treisman (1963) developed an early variant of this pa model that did not 
make specific assumptions about the distribution of clock pulses except for a 
key constraint on their statistics. The constraint is that the inter-pulse inter-
vals are mostly relatively short in some trials, compared to the global average 
over trials, and mostly relatively long in others. That is, the clock speed varies 
from trial to trial (but always around a fixed average). Another way to say it is 
that, across trials, the ith inter-pulse interval following the clock-start is cor-
related with the jth inter-pulse interval in the same trial, for all intervals i and 
j occurring prior to the end of the timed duration. Simulations of this model 
demonstrate that it takes only a remarkably small amount of such correlation 
(i.e., variation in the pacemaker rate) across trials to recover the pattern of 
constant cvs. Treisman63.m contains code (see book’s GitHub repository) that 
allows any desired distribution of inter-pulse intervals to be simulated while 
still  observing the constraints. Part of what the code produces is a correla-
tion matrix for selecting random inter-pulse intervals with the specified level 
of correlations. As users can see for themselves, correlations can be reduced 
nearly to 0 in a Creelman-style pa model but still obtain constant cvs.

1.2 Variable Clock-speed Pacemaker-accumulators
The models in the preceding section used a pacemaker that emits random 
pulses at a constant rate on average, and stores different pulse-count totals 
to encode different durations T. In contrast, the models in this section use a 
fixed pulse-count threshold (call it q) and a variable pacemaker rate, A = q/T. 
When the pulses are purely excitatory, the model is equivalent to Killeen and 
Fetterman’s (1988) Behavioral Theory of Timing (BeT) model (although the 
“pulses” in that case are interpreted as transitions between states of behavior). 
When we add negative pulses emitted at a rate proportional to the positive 
pulse emission, the resulting process closely approximates a process known 
as a diffusion process (Simen et al., 2013). Such processes are idealized, one-
dimensional Brownian motion systems, in which a particle (equivalent to a 
pulse-count) drifts upward while being continuously perturbed by noise at 
every moment. This kind of perturbation (in three dimensions) accounts for 
the diffusion of particles in a liquid or gas over time. One-dimensional drift-
diffusion models (ddms) are leading models of two-alternative perceptual 
decision making, where the “particle position” represents something like the 
log odds ratio of one hypothesis vs. the alternative. In either case, BeT or the 
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time-adaptive, opponent Poisson ddm (TopDDM) of Simen et al. (2011, 2013), 
scalar invariance falls out of the models automatically. The code in oppo-
nent_Poisson_Appendix3.m explicitly compares the simulation of actual pulse-
counting to a diffusion approximation of pulse-counting (specifically, the 
Euler-Maruyama method, in which spike counting per se does not occur). The 
primary computational difference between these approaches is that in the for-
mer, a sequence of pulse-times is generated and then summed; in the latter, 
properly scaled deterministic and random noise increments are added to a 
running sum at every one of a sequence of time steps. The primary theoretical 
difference is that the pulses are finite in number and spaced out at separate 
points in time, in the former, while they are idealized as occurring infinitely 
often at every moment in the latter. Since the latter theoretical assumption of 
the diffusion model is not likely to be true in reality, it is worth noting that this 
assumption allows some very simple approximate mathematical expressions 
to be used to fit rt distributions.

2 Reaction Time Analysis Methods

Built-in Matlab functions that are particularly useful for reaction time analysis 
include sorting functions (sort), plotting functions (plot, hist, ksdensity), and 
many of the features of the Matlab Statistics Toolbox (this toolbox is an add-on 
product that comes with its own licensing fee). These functions are incorpo-
rated into several of the functions accompanying this chapter.

Growing numbers of researchers these days are also opting for alternatives 
to Matlab, such as the free, open-source, Python programming and scripting 
language, or the statistical programming language, R, in addition to open-
source versions of Matlab such as Octave. Python, for example, operates in 
many ways like Matlab, particularly when the NumPy and SciPy numerical 
and scientific computing packages and the Matplotlib graphics packages are 
 imported (see, e.g., Anaconda, for a complete development environment for 
scientific computing in Python). Here, however, we restrict our attention to 
programs in  Matlab. The primary virtue of Matlab, in the author’s opinion, is 
that, although it must be purchased and renewed yearly for updates, the soft-
ware is stable and platform-independent across Mac, Windows, and Linux 
computing platforms; documentation for each function is generally trust-
worthy and well organized; and there are fewer of the problems that seem to 
accompany open-source software (e.g., the confusion surrounding multiple, 
slightly different parallel versions – e.g., Python 2 vs. Python 3 – and updates 
that frequently break functioning software until workarounds are developed). 
Whether those features are worth the cost is a matter of personal opinion.
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2.1 Using Moments to Characterize the Data and Evaluate Conformance 
to the Scalar Invariance Pattern

The shape of a probability distribution can be characterized by its moments: 
that is, by the mean, variance, skewness, kurtosis, etc. Mathematically, the nth 
central moment is defined as the expected value of the nth power of the data 
minus the mean (when such expectation exists). In the case of skewness and 
kurtosis, the third and fourth central moments are normalized through divi-
sion by the standard deviation. In Matlab, these moments can be computed 
with a single function call. For this, we will assume that the reaction time val-
ues are contained in a vector having n elements in the variable rt. With such a 
variable, we can compute:

( ) ( ) ( ) ( ) ( )mean rt,var rt,std rt,skewness rt,kurtosis rt

Documentation for any of these can be easily obtained at the Matlab com-
mand prompt by typing, e.g.:

doc mean

In the literature on timing, the most famous phenomenon that can be observed 
by measuring rts is the constancy of relative temporal precision (Gibbon, 1977), 
that is, the constant ratio between the first two central moments of production 
time distributions. In studies that require animals to learn to press a lever after 
a delay of T seconds from a stimulus to obtain a reward, production times are 
found to be typically accurate: the average of the production time  distribution 
is close to T. The precision of the production time across trials, however, de-
creases as T increases. Such a relationship can be captured by computing the 
cv, which is the standard deviation (square root of the variance) divided by 
the mean of the response times contained in the vector variable rt. In Matlab, 
the cv can be obtained with:

( ) ( )CV=std rt /mean rt

cvs are often found to be roughly constant as a function of T across groups of 
participants. Violations of cv constancy are often observed if multiple dura-
tions T are mixed in a single experiment, with both human and non-human 
participants (Bizo, Chu, Sanabria, & Killeen, 2006).

2.2 Skewness and Model Selection
Skewness, the third standardized moment, captures how symmetric a distri-
bution is. Gaussian distributions (a shape that is often used to fit  production 
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time data) have zero skewness. Positive skewness, in which the mean is greater 
than the mode, and the tail on the right is heavier than on the left, is widely 
observed in two-alternative perceptual decision rts, but is less often observed 
in timing tasks, which typically yield skewness levels closer to 0. Nevertheless, 
skewness may provide a fairly robust test of the predictions of a timing model, 
because models that predict a Gaussian distribution of rts can be tested by 
verifying whether skewness equals 0. Simple Poisson counter models, such as 
BeT, predict skewness equal to twice the cv. Diffusion models such as Top-
DDM predict skewness equal to three times the cv (see  Simen et al., 2011, 2013, 
for discussion of proofs; these properties can be verified by running the model 
simulation code provided in the GitHub).

It should be noted that when the cv is small, skewness is, therefore, also 
expected to be small. Thus, if conditions can be created that generate large 
cvs, such as by driving attentional resources away from the primary task, then 
skewness should be expected to increase for models such as BeT and ddm, 
but not for models that predict a normal distribution of rts, such as the infor-
mation processing implementation (Gibbon, Church, & Meck, 1984) of scalar 
expectancy theory (set; Gibbon 1977).

In summary, skewness is worth computing as it helps in model selection. 
Matlab has a built-in skewness function that can be used in this way. The 
Matlab Statistics Toolbox also includes helpful functions for assessing nor-
mality or deviations from normality in a set of rt data in variable rt (e.g., 
normplot(rt)).

2.3 Quantiles and Timescale Invariance
In Section 2.1, we have discussed how the cv tends to remain the same for 
different base intervals. Another famous feature of timing data that implies 
constant cvs, but is a stronger form of invariance, is called scalar invariance or 
timescale invariance. This is a phenomenon in which the entire distribution of 
rts can be rescaled, through division by the mean, so that the shape of the rt 
distributions with different means superimpose on each other perfectly after 
rescaling.

A good test of this form of invariance is to examine a feature of the rt data 
that is widely used in 2AFC research. To obtain a compact empirical descrip-
tion of the distribution, the rts are divided into quantiles. For example, after 
the rts are sorted from fastest to slowest, it is possible to calculate the 10th, 
30th, 50th, 70th, and 90th percentile by taking the 10% fastest, 30% fastest, 
50% fastest, 70% fastest, and 90% fastest rt, respectively. If there is scalar 
 invariance, the plot of the quantiles from one duration condition should line 
up with the corresponding quantiles from another condition.
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The following Matlab commands will compute the quantiles by sorting the 
reaction time data in the vector variable rt :

( )rt_sorted=sort rt ;

determine how many trials there are

( )lrt=length rt;

and compute the quantiles of reaction time data stored in the Matlab variable 
rt:

( )( )*quantiles1=rt_sorted floor lrt 0.10.30.50.70.9 ;  

Supposing that there are quantiles from a different data set stored in the vari-
able quantiles2, the two rt distributions can be examined for time scale in-
variance by plotting them against each other:

( )‘ ’plot quantiles1,quantiles2, o ;

These plot points should form nearly a straight line, with slope equal to the 
ratio of the average of the timed durations in the two different conditions. 
Additional analyses based on linear regression can be computed and the best 
fitting line can be superimposed on the data (a quick but incomplete way of 
doing this is to go to the Tools menu of the figure window in Matlab, select the 
Basic Fitting menu option, and then select “linear” in the popup dialog box 
that appears).

2.4 Maximum Likelihood Fitting of Distributions to rt Data
The most sophisticated method for testing model predictions is by fitting 
model parameters to empirical rt distributions. In two-alternative perceptual 
decision research, this approach is powerful and widely used. Despite having 
a similar goal, different fitting methods greatly vary in terms of their computa-
tional speed, their robustness (resilience from data not actually produced by 
the process under investigation, but instead delayed by distraction, for exam-
ple), and the amount of data they require for fitting accurately. For this reason, 
a large amount of work is devoted to comparing the fitting methods and trying 
to find new ones.

Maximum likelihood fitting is a standard technique for fitting models to 
data in many areas. The likelihood function is the point-by-point product of a 
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candidate probability density function’s values evaluated at each of the ob-
served rts. For example, a Gaussian density has two parameters, a mean, and 
a variance. To calculate the likelihood of the rt data for a given value of mean 
and variance, we multiply the probability density value at each rt point to get 
the overall likelihood of the data, given the particular parameter values used. 
If a new set of values for the mean and variance parameters gives a higher 
likelihood, then we prefer that set of parameters to the previous set. Intuitively, 
those parameters that make the data appear most likely are themselves likely 
to be the parameters that generated the data in reality. Thus, an iterative pro-
cedure can be implemented, wherein a parameter value is chosen (or multiple 
values are chosen, for models with more than one parameter), the likelihood 
of the data is computed, and then a new parameter is chosen to see if it gives a 
higher likelihood. This could be done purely randomly, but search procedures 
in Matlab’s Statistics Toolbox, and also in its Optimization Toolbox, can be 
used to do much more intelligent searching over parameter space. The code 
for implementing such a search is shown in fit_models.m (see book’s GitHub 
repository). It is relatively concise, because the fitdist function hides a large 
degree of complexity.

The maximum likelihood method is particularly useful in timing research, 
because pa models produce rt distributions with simple, closed-form expres-
sions, such as the normal, gamma, or inverse Gaussian distributions. The most 
common distributions are built in to Matlab’s Statistics Toolbox, allowing sam-
ples to be drawn easily. Moreover, because of the closed-form expression, the 
fit to the data can be done by simply modifying the parameters of the distribu-
tion and finding the best fit rather than by sampling the data and simulating 
the model output as in the case of models with no closed-form expression. 
Instead, a computation-intensive process is required to evaluate the likelihood 
function for the data of models without a known, closed-form RT distribution, 
so that maximum likelihood methods are frequently outperformed by meth-
ods such as the chi-square method (Ratcliff & Tuerlinckx, 2002). Furthermore, 
new methods such as hierarchical Bayesian methods (e.g., Wiecki, Sofer, & 
Frank, 2013) are becoming increasingly interesting to researchers, given their 
ability to fit small amounts of data and to infer population-level parameters ef-
ficiently. For example, they can infer a set of parameter values that represents 
patients with attention deficit hyperactivity disorder versus a set of values that 
represents neurotypical control participants. We do not go into those meth-
ods here, since they are at the forefront of development in the two-alternative 
 decision domain, and have not yet (to my knowledge) been widely used in fit-
ting timing data.
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2.5 Model Complexity
Maximum likelihood fitting offers one other useful property, which is that like-
lihood methods can easily be adapted so as to penalize for model complex-
ity. Occam’s Razor is the principle that the simplest explanation of real data 
should be preferred, all else being equal. When one statistical model has more 
parameters than another, it has more flexibility to fit a wider range of data 
patterns. In the extreme, a model that has as many parameters as data points 
is likely to fit the data perfectly. However, such a model is not at all likely to 
generalize well to data that has not been fit. Such models are said to overfit 
observed data, at the risk of failing to fit unobserved data. To combat this risk, 
tests such as the Akaike Information Criterion (Akaike, 1974), and the Bayesian 
Information Criterion (Schwarz, 1978), can be used to rule out overly complex 
models. Both of these methods simply add a penalty to the logarithm of the 
computed likelihood function, with the amount of the penalty depending on 
the number of parameters. Thus, a model A that fits the data less well, but with 
fewer parameters than model B, may in the end have a higher likelihood score. 
In such a case, we select model A over model B.

If the log likelihood of the data is computed by the fitting methods de-
scribed in the previous section and stored in variable ll, it can be adjusted for 
parameter penalties as follows, where the number of parameters in the model 
is k (for example, Creelman’s model has a pulse rate parameter and a pulse-
count threshold parameter, so k = 2):

AIC 2 k – 2 ll;∗ ∗=

Given that the log likelihood is subtracted from the parameter penalty in the 
standard formulation of the aic, the goal is to select the model with the mini-
mum aic score.

The Bayesian Information Criterion is also used for model selection and 
tends to implement a stronger penalty for parameters:

( )( )BIC k log length rt – 2 ll;∗ ∗=

2.6 Outlier Treatment
One factor that bedevils rt research is the presence of contaminated data. If 
a participant does not pay attention during a trial of an experiment, they may 
issue a response that is far later, or far earlier, than would normally occur. There 
is a host of different approaches to removing outliers from data, though none 
can be assured of doing it correctly (see, e.g., Ratcliff, 1993). After all, a very 
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long rt may just be … a very long rt. Still, the presence of just one unusually 
long rt that results from inattention can throw off maximum likelihood fitting 
methods, because the likelihood of such a data point is so low according to the 
true parameter values.

Here is a simple technique for eliminating outliers that is by no means guar-
anteed to work perfectly, but in any case can be adapted by users to be more 
or less conservative as they see fit. It is included here primarily to emphasize 
an incredibly useful technique for indexing rt data that is outside an outlier 
cutoff range.

We can eliminate unusually long rts by computing the standard deviation 
of the data, and then keeping only those data that are smaller than some num-
ber of standard deviations above the mean, for example 3:

( ) ( )( )*rt=rt rt<= mean rt +3 std rt ;

The syntax inside the outer parentheses creates a vector of logical 1s and 0s. 
Only those elements of the rt array that have a logical 1 in the corresponding 
array created by the <= operation will be assigned to rt. The result is that any 
rt greater than 3 standard deviations above the mean will be deleted from the 
array rt.

3 Conclusion

The Matlab code that accompanies this chapter (see book’s GitHub repository) 
is intended to help researchers who are new to rt analysis to begin analyzing 
their data with the aim of model selection. Arguably the best thing about Mat-
lab is its extensive, easily searchable Help documentation (for Matlab version 
2014a or later, type doc at the Matlab command prompt to bring up the docu-
mentation viewer). This author learned Matlab simply by progressing through 
the Matlab documentation and trying out the examples, which are provided 
in nearly every help topic at the command prompt. The MathWorks website 
also includes tutorial videos and forums for getting help from other users. 
After consulting the Matlab tutorial documentation section (called Getting 
Started With Matlab in version 2014b), I recommend that new users try out 
some of the functions provided with this chapter, using the debugger in Mat-
lab to step through lines of code one by one to see how variables in memory 
are changing as a script or function is executing, and to learn how particular 
Matlab built-in commands are used for rt analysis. Experienced users may 
wish to use this code as a stepping-off point for investigating methods more 
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widely used in the two-alternative decision making literature, some of which, 
such as hierarchical Bayesian model fitting, have yet to be used widely in tim-
ing research.

I have not addressed the very useful technique of fitting rts in retrospec-
tive timing tasks, as was done for example in Balci and Simen (2014). In such 
tasks, estimates of time intervals are used as the inputs to a decision process. 
Balci and Simen (2014) applied this technique to data from a temporal bisec-
tion task, in which intervals are presented and the participant must categorize 
them as being either closer to a short reference interval, or closer to a long 
reference interval. Choice probabilities for long and short choices and corre-
sponding rts in this case are not necessarily directly related to the mechanism 
of time estimation, but the rt data here provide important information about 
the mechanism by which temporal discriminations are made after an interval 
is over. Because the literature on non-temporal, two-alternative decision mak-
ing covers this type of rt analysis extensively, and because fitting two-choice 
rt data is more complicated than fitting “1-choice” production times, I do not 
address such methods here. However, they are really just extensions of the ap-
proaches described here. Ratcliff and Tuerlinckx (2002) offer a comprehensive 
discussion of how model fitting is done, as just one example, and a number 
of fitting algorithms and tutorials exist in the two-choice perceptual decision 
domain.
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chapter 9

Analysing Multi-person Timing in Music and 
Movement: Event Based Methods

Mark T. Elliott, Dominic Ward, Ryan Stables, Dagmar Fraser,  
Nori Jacoby and Alan M. Wing

1 Introduction

Accurate timing of movement in the hundreds of milliseconds range is a hall-
mark of human activities such as music and dance. Its study requires accu-
rate measurement of the times of events (often called responses) based on the 
movement or acoustic record. This chapter provides a comprehensive over-
view of methods developed to capture, process, analyse, and model individual 
and group timing.

In a classic paper on sensorimotor timing, Stevens (1886) used a combina-
tion of paced and unpaced tapping over a range of tempos to describe what 
we would now recognise as characteristic attributes of movement timing. Par-
ticipants tapped with a metronome set to various tempo values for a number 
of repetitions and then tapped on their own to reproduce the metronome 
tempo as accurately as possible. Stevens presented his results graphically as 
time series of intervals between successive responses. He showed that timing 
is highly adjustable but is subject to variability in produced intervals, which 
increases as the target interval lengthens. Moreover, he observed that the vari-
ability is not purely random but has a characteristic patterning. This includes 
distinct tendencies to short-term alternation between shorter and longer in-
tervals (at faster tempos) and longer term drift around the target interval (at 
slower tempos).

Many papers (e.g., see Repp & Su (2013), for review) subsequent to Stevens 
(1886) have examined paced and unpaced finger tapping. The goals of the re-
search include characterising influences on timing accuracy in terms of mean 
and variability and also understanding the nature of patterns in the variation. 
Although the majority of these studies has focused on individual performance, 
recently there has been growing interest in the relation between the timing 
of multiple individuals attempting to synchronise their joint performance, 
with the goal of achieving coherent ensemble timing (see Elliott, Chua, &  
Wing, 2016, for a review of this emerging area in the context of mathematical 
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models). Where previously the theoretical interest focused on understanding 
component sources of variance in the individual (i.e., timer, memory, atten-
tion, input, and output delays), the new paradigms raise questions about forms 
of timing linkage, including feedback correction and anticipatory adjustments, 
that keep participants moving together.

Stevens (1886) collected data using Morse code signal set transmission key 
presses (see next section for further detail). More recently movement timing 
study methods have ranged from switching devices such as computer keyboard 
keys, push button switches, resistive and capacitive contact switches to sen-
sors such as force transducers and motion tracking cameras capable of char-
acterising the dynamics as well as the timing of the movements. A subset of 
sensorimotor timing studies often involves research around timing in musical 
production. This research can also involve a variety of input devices, each with 
a unique set of methodological constraints. When using acoustic instruments, 
for example, additional data capture devices need to be considered, along with 
methods of extracting onset locations from the musical signal. Similarly, when 
using Musical Instrument Digital Interface (midi; a universal interface to a 
wide range of electronic musical instruments) devices, variability and latency 
in the system can cause issues when relaying the device’s output to the partici-
pant in real-time.

Studies of timing in western music have largely focussed on the use of a pia-
no (Repp 1995; Shafer, 1984), largely due to the simple relation between move-
ment, note sounded, and the possibility of mechanical measurement. Similarly, 
these experiments are confluent with finger-tapping studies given that expert 
pianists tend to exhibit particularly strong timing capabilities (Keele et al., 1985; 
Loehr & Palmer, 2007). The piano also supports research into a range of syn-
chronisation types such as two players following each other (Goebl & Palmer, 
2009), a single player following an external stimulus (Goebl & Palmer, 2008), 
and a single player using both hands (Goebl et al., 2010). With both upright 
and grand pianos, sensors or microphones can be placed inside the instrument 
(Palmer & Brown 1991; Shafer, 1984) in order to record the moments at which the 
hammer strikes the string. More recently, electric pianos tend to be more widely 
used (Goebl & Palmer, 2008; Henning, 2014) due to their ability to output midi 
messages and to modify musical parameters such as playback time and timbre.

Other research has considered a broad spectrum of instrument types, each 
bringing challenges in terms of capturing the acoustics and defining move-
ment timing events. De Poli et al. (1998) analysed expressivity in solo violin 
performances, whereas Rasch (1979), Wing et al. (2014), and Stables et al. (2014) 
present models for interpersonal synchronisation in small string ensembles, 
namely trios and quartets. Similarly, Ellis (1991) and Friberg and Sundström 

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



179Event Based Methods

<UN>

(2002) investigate swing ratios in solo saxophone and percussion performanc-
es respectively.

This chapter is structured in five main sections, as follows. We start with 
a review of data capture methods, working, in turn, through a low cost sys-
tem to research simple tapping, complex movements, use of video, inertial 
measurement units, and dedicated sensorimotor synchronisation software. 
This is followed by a section on music performance, which includes topics 
on the selection of music materials, sound recording, and system latency. The 
identification of events in the data stream can be challenging and this topic 
is treated in the next section, first for movement then for music. Finally, we 
cover  methods of analysis, including alignment of the channels, computation 
of between channel asynchrony errors and modelling of the data set.

2 Data Capture

2.1 Capturing Movement
Early studies into sensorimotor synchronisation focused on a very simple mo-
tor action in the form of a finger tap (Repp, 2005). Not only is this a simple ac-
tion for most participants to perform, it is also an easy event to record. When 
people produce a finger tap action, there is an asymmetry in the flexion and ex-
tension segments of the movement (Balasubramaniam, Wing, & Daffertshofer, 
2004). This results in a short impact time of the finger onto the surface, gener-
ating strong tactile feedback (Balasubramaniam et al., 2004; Elliott, Welchman, 
& Wing, 2009a) that participants align with the external beat. By recording 
the impact time of the finger, researchers subsequently have an accurate event 
onset time of each finger tap. This is how one of the earliest known sensorimo-
tor synchronisation experiment was implemented (Stevens, 1886). Participants 
tapped their finger on a Morse code key with the electrical contact recorded 
on a smoked drum kymograph. On a kymograph the timing is measured from 
distances between pulse marks on the surface of a drum rotating at constant 
velocity.

The modern equivalent of Stevens’ (1886) approach is to use some form of 
touch sensor connected to a computer. The times between movements are de-
termined by reference to distinct events registered by the sensor. Force sensi-
tive resistor (fsr) materials are particularly useful for registering finger taps 
(e.g., Elliott, Wing, & Welchman, 2010; Schultz & Vugt, 2015). In addition to be-
ing very low cost, the sensors come in the form of a thin membrane, meaning 
that there is no ‘travel’ when the finger hits the surface (as might be the case if 
one used a button press or keyboard to record events).
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Similar devices include piezo-electric sensors and the more recent capaci-
tive sensing technology (as used on modern touch-screens). While low cost 
and practical for recording the impulse response of the tap, the aforemen-
tioned sensors tend not to be sufficiently linear for measuring the amplitude 
or shape of the signal. In scenarios where these parameters are of interest, a 
force sensor (e.g., ati Industrial Automation; http://www.ati-ia.com/) can be 
used (Elliott et al., 2009a).

Interfacing these sensors to a pc for recording responses usually requires a 
data acquisition card (daq). These devices capture the analogue signal from 
the sensor and convert them into a digital value for import into Matlab or simi-
lar software. daqs, such as those from National Instruments, Measurement 
Computing and Labjack have a wide price range, depending on number of 
channels, maximum sampling rate and the number of functions the device 
has. A key advantage is that the devices can be used to output the external cues 
and also trigger any other external devices, so all data is both output and re-
corded with a common time base, i.e., synchronised. Time resolution depends 
on the sampling rate, but it is possible to achieve very reliable and consistent 
event timings from these devices.

The close relationship of sensorimotor synchronisation research to musi-
cal contexts has meant that often midi equipment has been used to record 
participant responses. In particular, drum-pads have been used as an effective 
tapping sensor (Manning & Schutz, 2013; Pecenka & Keller, 2011), providing a 
large surface area and no movement in the surface itself. Keyboards have also 
been used (Goebl & Palmer, 2008; Keller, Knoblich, & Repp, 2007), however 
the time difference between the finger hitting the key and the key travelling 
down to hit the sensor adds an uncertainty as to when the event onset actually 
occurred. There is also a level of time lag and variability in midi communica-
tions between devices and the computer software. This has been identified as 
a small but not insignificant amount of delay (Repp & Keller, 2008; Schultz & 
Vugt, 2015) and, hence, should be characterised and accounted for when using 
this interface for timing experiments.

2.2 Example of a Simple, Low Cost System for Recording Finger Taps 
to Auditory Cues

Both the sensors and hardware for collecting data from tapping studies can 
range from very high-cost (e.g., force sensors with a high specification data 
 acquisition card) to low-cost (simple impulse detecting sensor, with sound 
card input). Figure 9.1 provides an example of a simple solution that can be 
applied in fieldwork to record one or more participants performing a tapping 
experiment.
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One or more sensors are connected to a sound card. Sensors can be as simple 
as a wooden box or a soft pad in which earbuds are installed. These may be 
used as very cheap but low-sensitivity microphones that are well suited to  
record a direct touch on the surface to which they are attached, and are insen-
sitive to external noises. This setup is able to detect even a light touch, if the 
soundcard is set to a high gain.

An external sound card is connected to a computer via usb. The computer 
sends an auditory stimulus (such as a metronome) through Digital Audio Work-
station (daw) software such as Cubase or through designated software such as 
MatTAP (Elliott, Welchman, & Wing, 2009b; see Section 2.6). A loopback cable 
is installed so that stimulus and output are recorded with zero  latency, and 
the responses and loopback stimulus are recorded on two or more separate 
 channels. One or more high-quality headsets are connected to an audio  splitter 
so that participants can hear the stimulus. If participants synchronise only to 
one another, the headsets can be removed and sensors can be made of hard 
resonating material such as a wooden box.

2.3 Complex Movements
It is clear why finger tapping became the de facto task for early sensorimo-
tor  synchronisation experiments: simple equipment setups can be used 

Figure 9.1 Example of a simple, low-cost experimental setup for capturing finger tap  
responses from group timing experiments.
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to  accurately measure the event onsets for timing analysis. More recently, 
 researchers have been interested in increasingly complex movements. For 
 larger groups performing more complex movement interactions, data involv-
ing temporal and spatial dimensions must be recorded. This could be upper 
limb movements such as choreographed ballet movements (Honisch, Roach, & 
Wing, 2009), or lower limb movements such as walking or bouncing ( Georgiou, 
Racic, Brownjohn, & Elliot, 2015). There are two ways of typically capturing 
these movements. The first is using marker-based motion capture and the  
second is using inertial measurement units (imu). Here, we provide some rec-
ommendations in their use in the context of movement timing experiments.

2.4 Video Motion Capture
3D motion capture systems such as Vicon (Vicon Motion Systems Ltd, uk) and 
Qualisys (Qualisys ab, Sweden) are considered to provide the gold standard 
in terms of accuracy. Movements can typically be captured with an error of 
<0.5mm at hundreds of samples per second. On the negative side, systems 
tend to require calibration over a specified capture volume at the beginning 
of each session and reflective markers must be accurately placed on the bony 
landmarks of the participant’s body. Furthermore, post-processing can be a 
tedious task in terms of labelling markers for each trial, such that trajectories 
can be identified for analysis. While most software packages associated with 
these systems have an ‘auto-label’ feature to identify markers, this is liable to 
fail. Labelling can be become particularly complex for multi-person studies. At 
the start of an analysis, the researcher is presented with a cloud of unlabelled 
markers in 3D space. Markers in successive frames must be linked to define 
trajectories, which can be identified with body segments of each participant. 
To help identify individual participants in a group it is often advantageous to 
add extra markers (not used for tracking) somewhere on the body that is a 
unique formation for each group member. For example, marking out the cor-
ners of a small square on the back of Participant A, versus the corners of a 
triangle on Participant B can help identify which person is which during label-
ling. There are ‘active marker’ systems, where the marker itself is electronic 
and hence can be pre-assigned a label or id. An example of this type of system 
is the Polhemus Liberty (Polhemus, usa), which uses active markers in a mag-
netic field to track motion.

For event based timing analysis, one is often only interested in the temporal 
aspects, even for complex movements. Therefore, a small number of markers 
can be used, rather than a full body marker set (the Vicon Plug-In-Gait marker 
set is in the region of 40 markers per person). It is important to choose a mark-
er location that will provide the primary trajectory for analysis. This might be 
a marker on the finger for upper limb movements, or the heel for lower limb 
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movements. However, the marker must always be in good view of the cam-
eras, minimising the chances of occlusions. Additional markers can be applied 
to other areas of the same limb or body segment, both to aid identification 
and also as a secondary trajectory source in case there are problems with the 
primary trajectory data (a consistent trajectory location across participants 
should be maintained however).

Trajectories for each marker can usually be output from the software as 
a text file, with each marker having an individual X, Y, and Z coordinate at 
each time sample. We provide example code for parsing these text files,  using 
a representative output from Vicon Nexus software (see this book’s GitHub 
repository).

2.5 Inertial Measurement Units
imus consist of two or three sensing devices. Two-sensor devices consist of 
an accelerometer, that measures acceleration (in units of m/s2 or g) and a 
 gyroscope that measures rate of angular rotation (in units of radians/second 
or degrees/second). Three sensor devices have an additional magnetometer in-
cluded (units of Tesla or Gauss). Recent devices output values from each sensor 
in 3 axes. imus use a local coordinate system, so it is not easily possible to infer 
the location of a device in global coordinates. That is, if there were two devices 
attached to a person, it would not be possible to directly calculate the relative 
distance between those devices (unless the starting positions were known). 
Additional data fusion algorithms allow the advantages of three sensors to be 
combined such that accurate motion analysis can be achieved. Without these 
algorithms, trying to infer the positional trajectory of movement from acceler-
ometer data alone (by integrating the data twice) will result in drift and inac-
curacy from the true position. However, for measuring timing of movements 
(rather than position) the associated drift is not such a big issue as the timing 
in the data remains intact. With some initial alignment of the data with video, 
it is possible to identify the peaks and troughs in the acceleration data that re-
late to key parts of the movement cycle (e.g., walking). Alternatively, integrat-
ing to velocity can produce a clean, and easier to interpret signal, by applying 
both low and high-pass filters to the data.

An imu’s main advantage is that the participant is free to move around 
without restriction. There is no capture volume as with video motion capture 
and occlusions are not an issue due to the sensors being within the device. 
Participants ‘wear’ one or more of the devices on the body and are then free to 
move naturally. This is particularly useful for gait analysis: in a video motion 
capture gait lab, only a small number of gait cycles can be recorded within the 
capture volume. With imus, the participant can complete a long walk or even 
be recorded over a full day, dependent only on the on-board memory of the 
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device. A number of imu companies have seen the potential for this and devel-
oped software alongside their devices that includes the algorithms to do a full 
or partial gait analysis. Current examples include apdm (apdm Inc., us; www 
.apdm.com), XSens (XSens Technologies B.V., nl; www.xsens.com), GaitSmart 
(etb Ltd; www.gaitsmart.com), Shimmer3 (Shimmer Sensing, www.shimmer 
sensing.com), and bts (bts S.p.A, it; www.btsbioengineering.com). All but 
bts use multiple devices worn on the body. The actual gait parameters pro-
vided vary amongst the software packages and many still struggle to provide 
accurate step length measures due to the drift issues mentioned above.

A particularly useful feature of the apdm and Shimmer devices is that they 
are wireless, time-synchronised devices. They come as a set of imus to be fit-
ted on different body segments of a single individual. However, the software 
also allows raw data access such that each device could instead be fitted to 
separate individuals, with their activity recorded wirelessly. Given the result-
ing data is time-synchronised, this is ideal for group timing studies (Georgiou 
et al., 2015).

2.6 Dedicated Sensorimotor Synchronisation Software
The main challenge with setting up the data acquisition and cue presentation 
for both single- and multi-person sensorimotor synchronisation experiments 
is in minimising timing uncertainty. Multi-tasking operating systems, such 
as Microsoft Windows, imply that executing commands is an asynchronous 
 process. That is, you might run a segment of code which outputs a cue stimu-
lus every 500 ms, but the operating system will not necessarily execute that 
command immediately if it is busy dealing with another application in the 
background. This can create jitter in the cue generation, so that a stimulus that 
should occur exactly every 500 ms might instead execute on average every 500 
ms, with actual intervals produced varying around that value (e.g., 490, 515, 
516, 502 ms etc.). If the standard deviation of these intervals becomes relatively 
large then the impact on the analysed movement timing results will be signifi-
cant (Repp, 1999). Interval variance will increase as participants correct their 
movements to remain in time with the varying beat. Asynchrony variance will 
also be artificially inflated as both the variance in the movement and the cue 
sum together. On the other hand, controlled manipulation of cue jitter can be 
effective for investigating cue reliability effects (Elliott et al., 2010; Elliott, Wing, 
& Welchman, 2014).

Similar issues occur with capturing responses. If a participant is required 
to tap a key on a standard pc keyboard in time with the beat, it is difficult to 
reliably record the onset time due to lags in the operating system servicing the 
event. Therefore, when designing an experimental setup, minimising lag time 
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and jitter in the cue and response signals are a key consideration. Because of 
this, a number of software toolboxes have been developed to assist with data 
capture in sensorimotor synchronisation (sms) experiments. These include, 
ftap (Finney, 2001), one of the earlier toolboxes written for Linux. This tool-
box interfaced directly with midi instruments and allowed accurate control of 
cue timing and recorded finger tap responses. Max/msp (Cycling ’74, usa) is 
a commercial software package that provides a visual programming interface 
with full midi support. This has often been used in timing experiments with 
the visual programming interface allowing relatively simple onset detection 
and analysis to be set up with minimal coding skills. As previously mentioned, 
midi suffers from lag and some jitter. These are substantially smaller and less 
significant than trying to use traditional programming approaches and pc 
hardware interfaces, which must still be characterised. A recent study (Schultz 
& Vugt, 2015) has characterised both Max/msp and ftap experimental setups 
for a sensorimotor synchronisation experiment, finding the mean lag (with re-
spect to an fsr sensor response) to be 15.8 ms and 14.6 ms, respectively. The 
standard deviation (jitter) of the lags was 3.4 ms and 2.8 ms, respectively. The 
study contrasted the two midi setups to a novel hardware setup using a low 
cost embedded controller (Arduino, www.arduino.cc). By using the Arduino 
device (taking the signal processing away from the pc), the lag was reduced to 
0.6 ms with a jitter of 0.3 ms.

It is clear, therefore, that moving the signal processing away from the pc to 
dedicated hardware such as an embedded controller or a data acquisition card 
(e.g., National Instruments, Measurement Computing) is a good way to get an 
accurate cue presentation and corresponding response times. This philosophy 
was used to develop another sensorimotor synchronisation toolbox. MatTAP 
(Elliott et al., 2009b) uses data acquisition hardware interfaced to the matlab 
programming environment to provide a comprehensive toolbox that offers 
virtually no lag or jitter in the signal output and response capture. By using a 
loop-back method (see Figure 9.2), both the output signal and response can 
be sampled under a common clock at very high sampling rates (e.g., 10kS/s) al-
lowing highly accurate measures of asynchrony (see Section 5.2). The toolbox 
further uses a graphical user interface that allows the user to accurately control 
cue presentation, store data and run analyses. We have successfully interfaced 
the toolbox with both accelerometer devices (apdm Opal) and video motion 
capture (Qualisys) to allow accurate measures of group movements to an au-
ditory metronome or visual cue. The downside to this high level of accuracy 
is increased expense, with both the hardware (data acquisition) and Matlab 
(with appropriate toolboxes) adding up to a relatively high cost compared to 
other solutions. Regardless, much of the code we provide with this chapter has 
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evolved from MatTAP, generated from the requirements of new experiments 
within our labs.

3 Audio Capture

In musical timing research, both single and multi-agent studies generally 
adopt a similar methodology. Based on the study’s objectives, selections are 
made for instruments, number of players and source material. Environmen-
tal constraints such as visual and auditory occlusion are then set and trials 
are implemented to acquire data. The performance data can be captured in a 
number of formats ranging from acoustic waveforms, midi messages, sensor-
data taken from imus (see Section 2.5), movement data from a video motion 
capture device (see Section 2.4), or a combination of these systems. In this sec-
tion we concentrate on the capture of the audio signals, rather than the move-
ments of the agents producing the music. This involves recording the acoustic 
waveform and configuring the system to effectively derive the relevant events.

Workstation running
MatTAP

Data Acquisition

Digital Output
(Cue trigger pulse)

Sensors
(response capture)

Analogue Output
(typically to audio speaker)

Synchronisation Pulse

OutputsInputs

Figure 9.2 A typical hardware configuration for cue generation and response capture using 
MatTAP (reproduced from Elliott et al., 2009b). The toolbox uses data acquisition 
hardware to achieve a high level of timing accuracy. (1) Two outputs are generated to 
drive stimuli. One is an analogue waveform, typically used to drive an audio speaker, 
but can also be applied to haptic or visual devices. The second output is a digital 
square pulse, which can be used to trigger bespoke stimuli equipment. To increase 
accuracy further, this pulse is fed back into the system to compensate for processing 
delays in the hardware. (2) Up to two sensors can be utilised to capture responses. 
Any sensor that produces an analogue or digital voltage, typically in the range ±5 V 
can be used to record events. (3) The output signals and corresponding responses  
are captured and stored automatically in individual, sequentially numbered .mat 
format files.
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3.1 Material Selection
The selection of performance material is generally based on the extent to 
which the piece enforces performance characteristics. In synchronisation ex-
periments, long passages of concurrent isochronous events (equally spaced 
notes performed at the same time) are desirable, often limiting the pool of rec-
ognised works. For this reason, Moore and Chen (2010) opted to use an excerpt 
from Shostakovich’s String Quartet Op. 108, No. 7, which included 260 events 
performed in quick succession by two members of a string quartet. Further-
more, all notes are generated by individual bow-strokes, and are rhythmically 
partitioned into groups of four. Similarly, both Wing et al. (2014) and Stables 
et al. (2014) used an excerpt from Haydn’s String Quartet Op. 74 no. 1, which 
consists of 48 x 8th notes performed continuously by almost all members of 
the ensemble. For studies investigating phase relationships such as Shaffer 
(1984), multiple voices with independent subdivisions are desirable, leading 
to the selection of an excerpt from Chopin’s Trois Nouvelles Etudes. Specially 
composed pieces are also commonly used in timing studies, typically when 
there is a requirement for tractable context and specific musical conditions. 
This is the case in Goebl & Palmer (2009), where the content is easy to perform 
and subdivisions vary between players. This allows trained musicians to easily 
perform the experiment with no pre-requisite knowledge of the content.

3.2 Sound Recording
In some cases, it can be impractical to capture event-based performance data 
such as midi due to the acoustic properties of the instrument, or the physical 
restrictions that controllers impose on a participant. An acoustic violin, for ex-
ample, produces notes with legato (i.e., in a smooth continuous manner, with-
out breaks between notes) and has a small area of sound propagation. This 
means it is difficult to incorporate a midi device into the instrument without 
restricting the movement of the musician. This often introduces a requirement 
for audio recording, followed by post-processing to perform onset detection in 
order to derive a symbolic representation from the captured acoustic data. For 
music listening, instruments are typically recorded by placing microphones 
at acoustically relevant locations around the source and surrounding environ-
ment, with the intention of achieving a desired aesthetic. This can differ from 
analytical recordings where the aim is to isolate signals and derive an accurate 
representation of the performer’s onset locations via further signal decom-
position. For well recorded monophonic signals (e.g., solo instruments) com-
prising homogeneous fragments of sound, timing data can be extracted more  
easily when compared to polyphonic signals (e.g., multiple instruments played 
by a group) or those contaminated by noise. For this reason, close-miking 
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 techniques in which the microphones are placed near the sound source (e.g., 
the strings) are generally preferred to room or ambient miking in order to ob-
tain a higher signal-to-noise ratio; in the case of multi-person performance, at 
least one microphone is used per source, thereby minimising acoustic bleed. 
The multi-microphone setup is also advantageous in that further separation of 
the sources can be achieved through cross-analyses. Here, the sound pressure 
level of each source will vary across microphones, allowing for the attenuation 
of other instruments in the recording. In the case of polyphony, it may be nec-
essary to first employ source separation algorithms such as those proposed by 
Vincent (2006), and then perform onset detection on the resulting streams. In 
the latter case, noise-reduction can be used as a pre-processing step.

For close-miking, clip-on condenser microphones such as the akg C519 
range (similar to those used in Polak & London, 2014), provide high sensitiv-
ity and greater frequency and transient responses than dynamic microphones. 
Whilst omnidirectional microphones can be used for this task (sound from all 
directions is captured with equal sensitivity), localised polar patterns such as 
cardioid and hypercardioid (sound in front of the microphone is recorded with 
higher sensitivity) are preferable as they mitigate sound capture from external 
sources. During this process, careful miking techniques are necessary to gain 
proximity to the instrument and therefore achieve a high signal-to-noise ratio. 
When using the close-miking technique, the microphones tend to be placed 
on the areas of the instrument that don’t dampen the sound or prevent any 
free-flowing movement. In string instruments such as violins, violas and cellos, 
the clips are often located on the bridge of the instrument. For percussive in-
struments such as drums and cymbals, the microphones are clipped to the rim 
or to stands, so as not to interfere with the skin or plate. For brass instruments 
it is difficult to avoid the resonant surface of the instrument, so microphones 
tend to be clipped to the bell, with the microphone located inside or near to 
the opening.

An alternative to close-miking instruments is to use a vibrational pickup, in 
which a transducer reacts to vibrations of the instrument’s surface material. 
These tend to be less common as they have poorer transient responses, but can 
be used when close-miking is not plausible or susceptible to noise, such as in 
large ensembles.

For field recordings such as those in Polak and London (2014), portable re-
cording devices such as the Roland R-4 or the Tascam DP006 can be interfaced 
with microphones to capture the signal. These generally record data to an on-
board hard disk or portable storage device, which can later be transferred to 
another machine for analysis in an uncompressed format. The main benefit 
of these devices is that they can record multiple channels (usually up to 6) 
without the need for additional computational hardware, however they have 
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limited auditory feedback options and recording length is often dependent 
on battery life. More commonly, an external soundcard with a desktop or lap-
top computer is used, in which the soundcard connects to a host machine via 
usb or Firewire. Soundcards support varying numbers of inputs and outputs 
and generally have assignable sampling frequencies (often set by default to 
44.1kHz) for use during analogue to digital conversion. In this case, a software 
interface is also required to record the inputs to disk, which can be done us-
ing a daw such as Logic Pro, Ableton Live, Audacity, Reaper or Cubase, all of 
which share a similar multi-track interface, with varying levels of control over 
the audio signal.

3.3 System Latency
Due to the computational overhead involved in reading, writing and process-
ing a large number of samples each second, audio processing systems incur 
a time lag, known as latency, at numerous points throughout the processing 
chain. Furthermore, this latency is shown to exhibit high variability and in-
formation loss (Wang et al., 2010) when systems are subject to high processing 
loads (e.g., when multiple channels are being used to record a large ensemble), 
thus leading to unreliable playback. For this reason, it is generally not recom-
mended to feed the system output back to participants via headphones when 
musical timing is being measured, as latency will create negative recurrent ef-
fects on the performer. In isochronous rhythmic sequences, the threshold for 
perception of delay is observed by Friberg and Sundberg (1995) to be around 6 
ms for tones with relatively short intervals, and periodic timing correction to 
the delayed stimuli is observed to occur at time lags of as little as 10 ms (Thaut 
et al., 1998). Further to this, the standard deviation of inter-onset intervals (ioi, 
time be tween consecutive onsets) in performed rhythmic sequences is widely 
accepted to increase with auditory delay time (Pfordresher & Palmer, 2002). 
This suggests that even minimal system latency (observed by Wang et al., 2010 
to be around 19 ms for Audacity with Mac os X 10.6, when running under low 
computational load) is likely to impact the validity of results. If no other op-
tions are available, the signal path can often be configured to route the ana-
logue signal directly to the headphone output, bypassing the processing chain 
and minimising latency caused by play-through.

If processed auditory feedback is unavoidable, such as in experiments 
where participants will be played manipulated versions of their input signals, 
the buffer size of the host software should be reduced in order to reduce the 
latency time in the system. This limits the time allocated to the system to pro-
cess the audio samples, thus allowing the signal to reach the playback device 
in a shorter time period. The buffer size can often be controlled via the daw, 
and can be set experimentally between 32–1024 samples. Whilst lowering the 
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buffer size reduces latency, it also puts strain on the computer’s cpu as the 
processor is then required to complete more operations in a shorter period of 
time. Negative effects of excessively lowering the buffer size include the ad-
dition of audible noise to the signal path caused by loss of information. The 
input/output latency of the system also has implications for the use of external 
stimuli during experiments. Given the time delay incurred during playback, it 
is recommended to record audio signals generated by the computer back into 
the system whilst recording performers. This means any pre-recorded accom-
paniment or metronome tracks should be captured using headphones and a 
microphone in order to limit computational asynchronies caused by the varia-
tion in system delay at multiple points in the processing chain.

4 Onset Detection and Analysis

A bold onset is half the battle.
giuseppe garibaldi

One of the key challenges in post-processing for event-based analysis (both for 
movement and audio signals) is accurate onset detection. This step needs to be 
applied to both the cue signal and the participant’s responses. In this section, 
we cover the key approaches used to achieve accurate onset detection. The 
three main stages of onset detection are shown in Figure 9.3 and are common 
in both movement and music data analysis. However, completion of each stage 
often requires a specific approach, based on the origin of the signals.

4.1 Extracting Movement Onsets
In movement, onsets correspond with physical events, (e.g., the peak pressure 
applied to a point, a finger tap on a surface, or a sudden change in motion 
as measured by position, velocity or acceleration). Reliable onset detection is 
vital for analysing sensorimotor responses (Elliott et al., 2009b) by  allowing 
 accurate measurement of the asynchrony between the cue and the corre-
sponding motor response.

Pre-processingSignal Onset detection
function

Feature
identif ication

Onset times

Figure 9.3 Key stages involved in onset detection.
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In the example shown (Figure 9.4), a finger tap onto a surface is captured by a 
force sensor, converting the force into a voltage output. This shows the baseline, 
which represents the signal prior to the finger making contact with the sensor. 
A rise in the signal from baseline identifies the onset of attack. The  attack rep-
resents the rise of energy in the system from the prior state, i.e., the initial im-
pact of the finger onto the sensor. Peak attack occurs when the finger reaches 
maximum force onto the sensor. The onset of decay indicates the beginning of 
evanescence, i.e., the return to baseline as the finger begins to lift again, off the 
sensor surface. For movement onset detection, it is usually the onset of attack 
or the peak attack that is identified as the onset time of the signal.

4.1.1 Movement Data Pre-processing
Pre-processing is the transformation of raw data to facilitate processing by the 
onset detection function (odf). The first step in pre-processing is experimen-
tal design; facilitating the optimal capture of data and encoding the move-
ment. The experimental hardware must have a sampling rate of sufficient 
magnitude to capture the movement without aliasing. The sensor’s rise time 
and evanescent should be an order of magnitude faster than the movement. 
The magnitude of the onset sought should be readily distinguishable from that 
of the noise of the recording system, and distinguishable from common arte-
facts. The experiment should ideally offer a dedicated input channel for each 
element of participant response of interest, i.e., one touch sensor per finger, or 
a marker for each limb.

Algorithmic pre-processing addresses practical flaws in movement al-
ready captured. Low frequency human motion (below 10–50Hz) is  generally 

Transduced f inger tap voltage envelope.

time

vo
lt

ag
e

onset of decay

peak attack

evanescence

onset of attack
baseline voltage baseline voltage

Figure 9.4 Example sensor output signal resulting from a single tap.
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 contaminated with higher frequency noise. This noise comes from such  
sources as non-ideal sensors, the environment (e.g. 50/60Hz mains hum, 
 participant’s heartbeat) and the harmonics of movement itself. The frequency 
components of interest are commonly emphasised via low-pass filtering which 
attenuates all frequency components of a given signal above a cut off value, op-
timally without adding delays or distortion. Classically, a low-pass filter known 
as a zero lag 4th order Butterworth practically implements these requirements 
(Winter, 2009). These filters can be implemented algorithmically in software 
such as Matlab, rather than requiring a hardware implementation to be used. 
Following the application of the filter, signal peaks of interest should remain 
prominent whilst noise peaks should be reduced. For onset detection, a heu-
ristic cut off frequency can be determined by visual inspection and iteration. 
Note that by filtering, relevant information in the signal can be altered or lost. 
For temporal studies in particular, it is important to use a zero-phase filter. This 
is a special case of a linear-phase filter which avoids any frequency-dependent 
lag. The filtfilt command in matlab applies a filter both forwards and back-
wards, cancelling out any phase effects of the filtered signal.

To facilitate filtering, data recovered from non-ideal sensors must be sani-
tised. Such data should be continuous, machine-readable and exhibit values 
that readily allow for computation (e.g., numeric values within the maximal 
and minimal machine accuracy limits). Numerical sensor artefacts such as 
those arising from sensor dropouts, misconfigured apparatus etc. may return 
numerical error codes, missing values (e.g., empty set [] or NaN) or default 
values (e.g., zero). These values have no useful relation to the effect being mea-
sured and must be excluded to maintain the integrity of any analysis. Hence, 
data exploration and visualisation, i.e., a check upon the sanity of the data, 
should always be a first step.

For systems such as the Qualisys and Vicon motion tracking software, there 
are explicit functions that allow data for missing markers to be approximated. 
For less integrated systems, matlab functions such as isnan, isempty, isnumer-
ic can be used to find invalid, non-numeric values in time-series data.

Numerical sensor aberrations include sensor saturation (where the recorded 
movements exceed the capacity of the sensor to report), sensor drift, warmup 
trends and battery exhaustion, power bounce, and other artefacts of the record-
ing. The values may have some relation to the effect being measured, but have 
been transformed in a fashion not shared by the rest of the data, and hence 
may decrease the integrity of any analysis. These effects can be ameliorated 
by initialising each experimental session with a brief test run with real time 
sensor feedback. This will reveal aberrant values, allowing action ( replacing 
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batteries, adjusting sensor gain). As noted previously, thoughtful experimental 
design is the most essential pre-processing step.

The experimental artefacts, listed above, are distinct from participant arte-
facts, in which the participant offers responses outside of those anticipated but 
still within the scope of measurement; ambiguous touches, mistaken taps and 
involuntary movements etc. These should not be removed in pre-processing, 
which attempts to faithfully relay participant action to the odf. Participant 
outlier artefacts are treated with rigour in Section 5.3.

4.1.2 Onset Detection Functions (odfs)
The odf renders clearly the presence of attacks within the original signal. In 
musical onset detection this is often called the Reduction step, where the sound 
signal is traditionally downsampled to a ‘low’ sample rate (e.g.,  hundreds of 
hertz (Dixon, 2006)). However movement odfs typically eschew downsampled.

There are many varieties of odf: time and frequency domain, probabilistic 
and machine learning (Bello et al., 2005; Dixon, 2006; Eyben et al., 2010). In the 
context of movement, we focus on the time domain methods. In many senso-
rimotor studies the end of the attack, i.e. the peak of expressed force, can be 
considered the intentional onset of response. In sensorimotor timing, onsets 
might include peak velocity (Pelton, Wing, Fraser, & van Vliet, 2015), accelera-
tion (Honisch, Elliott, Jacoby, & Wing, 2016), or even higher derivatives such as 
jerk (Balasubramaniam et al., 2004; Elliott et al., 2009a).

For attacks that are obvious to an annotator, i.e., large increase in voltage 
amplitude, such as transduced force in tapping experiments (see Figure 9.3 
above) a simple envelope follower can be used to algorithmically extract the 
peaks of attacks (Eq. 1).

 ( ) ( )−
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E x n m w m

N
 (1)

in which w(m) is an N-point smoothing kernel centred at m = 0. This can be 
extended to use of the derivative which marks abrupt rises in energy with nar-
rowed peaks (Bello et al., 2005; Eq. 2):
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A direct method of detecting onsets arises from the derivative of the signal 
(1st or higher), which illuminate periods of change in the movement. The 
 onset of attack would be the beginning of the periods where the 1st derivative 
is positive. The onset of decay corresponds with the end of the attack, in this 
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example, marked by the beginning of the period where the 1st derivative is 
negative. However, this naïve approach is still susceptible to the presence of 
noise ( non-ideal sensors), overlapping participant responses (i.e., no return to 
baseline) or competing sources of spurious onsets (e.g., movement artefacts, 
movement harmonics).

4.1.3 Event Detection
Peak Picking involves a decision about candidate onsets (which are normally 
local maxima), resulting from the previous stage(s). If the odf has been suf-
ficiently well constructed, or the pre-processed data itself is suitable due to 
experimental design, this final stage is often simple thresholding. That is, can-
didate onsets that have a peak value above a certain threshold are considered 
to be movement onsets. This can be readily hand tuned in well-formed move-
ment experiments. Other domain specific knowledge can be added, such as 
the expected recurrence of onsets within specific durations, a minimal/maxi-
mal duration etc.

We provide in the accompanying code, peakdet, one of the more robust 
peak detection algorithms written by Eli Billauer.1 However, even the best algo-
rithms are likely to have false or missed detections, again due to noise on the 
signal from imperfections in the sensor or due to human artefacts such as false 
movements. Therefore, onset detection methods are typically complemented 
with manual visual checks to ensure any errors are removed. We have further 
written a Matlab based graphical user interface to visually check the peak on-
sets extracted using the peakdet code, which accompanies this chapter.

To measure the effectiveness with each change made in the process, we 
need measures of performance. If we consider that merely capturing all of the 
movement onsets is not sufficient, we must also reject non-movement onsets, 
which gives rise to two measures: Sensitivity and Specificity. We define Sensi-
tivity, also known as the true positive rate, as:

Sensitivity (Recall) =  Correct Movement Onset Detections / Total True 
Movement Onset Detections

In which Total True Movement Onset Detections are the total number of true 
movement onsets detected + the number of missed onsets. We define the Posi-
tive Predictive Value (PPV), as:

PPV =  Correct Movement Onset Detections / Total Movement  Onset 
Detections

1 http://www.billauer.co.il/peakdet.html
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In which Total Movement Onset Detections are the total number of true move-
ment onsets + false onsets detected.

Trivially, we could have a Sensitivity 1, by setting the threshold below the 
lowest peak. All true movement onsets would be captured by this threshold. 
This would unfortunately minimise PPV, i.e., permit a maximal number of 
non-movement onsets to pass the threshold and be labelled falsely as move-
ment onsets. There is thus a trade-off between the two values.

4.1.4 Dimensionality Reduction, Clustering and  
Machine Learning

The algorithms presented perform similarly to expert annotators’ subjective 
agreement of the incidence of onsets in single channel data. Multiple marker 
systems can result in onset complexes, in one or more channels, coincident 
with a true movement onset. Onset complexes in isolation would corre-
spond with an onset in a single channel system. These onset complexes re-
quire a further stage to evaluate when they become multi-channel  features. 
Simple stages include considering one channel of data as representative of 
the whole (identical to prior mono channel approaches), or a sum of coin-
cident onset complexes across channels compared to a threshold. Such a 
threshold may not capture the expert appraisal of multichannel cues that 
give rise to effective subjective onset labelling (e.g., in electromyography 
(EMG) contiguous channel onset complexes may result from electrodes as-
sociated with one muscle vs. multi-channel artefacts such as heartbeat con-
tamination). Consistent labelling of multichannel onset complexes can be 
facilitated by: dimensionality reduction strategies (such as principal com-
ponent analysis) and/or machine learning (clustering with an additional  
classification stage).

Principal component analysis (pca) is a linear method of data re- expression  
which returns a set of n components, where n is equal (or less) to the dimen-
sion of the original data. These components are ordered by their explicative 
power of the variance, of the original signal. If the underlying movement is 
the greatest source of variance, then the principal component will be a single 
channel representative of the underlying movement. By focusing on that prin-
cipal component, mono-channel strategies can be re-employed. Other meth-
ods of dimensionality reduction include independent component  analysis 
(ICA) and multidimensional scaling. When lower dimensional expressions 
do not collapse to one obvious channel, i.e., suggesting multiple and/or non-
linear underlying generators, machine learning methods can be applied (e.g., 
self-organising maps, generative topographic mapping).

Whilst Matlab has a Neural Network Toolbox at an extra cost, these ap-
proaches can be implemented in Matlab using the excellent netlab toolbox 
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(Nabney, 2002; http://www.aston.ac.uk/eas/research/groups/ncrg/resources/
netlab/). netlab is also largely compatible with Octave.

4.2 Extracting Onsets from Audio Recordings
An audio signal contains distinct events pertaining to one or multiple acoustic 
sources. Examples include a sequence of musical notes, a chain of percussive 
hits, and consonant and vowel segments comprising continuous speech. Event 
timing information is conveyed through variation in some physical property 
of the source. These changes are detected by the listener and registered as dis-
tinct events that are often inter-connected at a higher contextual level. The 
task of extracting timing information about events embedded within an audio 
signal involves estimating perceptually important points of change. In particu-
lar, we are interested in detecting the presence of new acoustic events and an-
notating associated temporal information, (e.g., start time, end time and event 
duration). Most research in the field of audio signal processing targets the 
automatic detection of event onsets. Onset detection is highly relevant when 
studying the synchronisation in music performance where accurate measure-
ment of response time is imperative.

As with movement (Section 4.1), the term onset is generally used to denote 
the earliest time at which a signal evolves quickly (Bello et al., 2005). This defi-
nition relates to the physical properties of the source and thus does not neces-
sarily correlate with the perceived start of an event (Von & Rasch, 1981) or the 
perceived attack time which refers to the moment of rhythmic emphasis for a 
musical tone (Gordon, 1987; see Collins, 2006, for a review of modelling percep-
tual attack time and associated problems therein). Nevertheless, most recent 
work on music onset detection takes a pragmatic approach by tuning and as-
sessing detection algorithms using hand-labelled datasets. Such  ground-truth 
data is typically generated by experienced individuals who combine critical 
listening with spectro-temporal analysis using state-of-the-art software to best 
identify the beginning of acoustic events that satisfy the requirements of many 
practical applications.

Most onset detection algorithms deal with a monophonic signal corre-
sponding to a single acoustic stream. The onset detection process follows the 
same principle as that described for movement onset detection (Section 4.1): 
Pre-processing, ODF transformation and finally event/feature extraction.

4.2.1 Signal Feature Based Detection Functions
The success of the system is fundamentally dependent on the reduction stage 
and so most effort has been on developing and evaluating different detection 
functions (Bello et al., 2005; Böck et al., 2012b; Collins, 2005a, Dixon, 2006). 
Perhaps the simplest of approaches to onset detection are those based on the 
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 amplitude envelope (Masri, 1997; Schloss, 1985). The general idea is that the 
onset of a new sound leads to a sharp rise in the envelope of the waveform. The 
local energy of the signal can also be followed rather than the amplitude (Bello 
et al., 2004), for example by applying a running sum low-pass filter to the square 
of the signal. It is common to use the time derivative of the  envelope such that 
significant changes in amplitude (or energy) are transformed to sharp peaks 
that are easily detected by thresholding the resulting detection function.

odfs based on temporal features are generally adequate for percussive 
sounds and provide good temporal resolution and have low computational 
demand. Klapuri (1999) suggested taking the logarithm of the envelope prior 
to differencing to minimise spurious local maxima after the physical onset of 
the sound and emphasise lower intensity onsets. A further refinement is to 
incorporate spectral information since transients tend to introduce energy at 
high frequencies. The short-time Fourier transform (stft) is commonly used 
for this purpose, although auditory filter banks have also been employed (Kla-
puri, 1999). Masri (1997) used the stft to focus the local energy measurement 
towards high frequencies, a technique useful for emphasising the percussive-
ness of a sound. This high frequency content (hfc) detector can, however, 
be problematic for low-pitched and non-percussive instruments (Bello et al., 
2005). In order to incorporate changes in the distribution of spectral energy 
over time, Masri (1997) proposed the spectral flux detector. Rather than sum-
ming the weighted magnitudes prior to differencing, the algorithm first sums 
over all positive changes in magnitude in each frequency bin between con-
secutive analysis frames generated by the stft. Because changes in magnitude 
are measured across different frequency bands, the detection function is more 
reliable compared to one based solely on the temporal envelope.

Additional spectral methods make use of the phase spectra to enhance 
subtle tonal variations in the signal, and are less dependent on changes in 
energy (Bello et al., 2004). The idea is that during the steady-state portion of 
the signal, differences between the (unwrapped) phase of consecutive spec-
tral frames will be constant. The phase deviation, defined as the second dif-
ference of the phase, i.e. the change in instantaneous frequency, can then be 
used to signify changes in the stationarity of the signal; large deviations are 
more probable during the attack region of a transient. Although methods in-
corporating phase information are better suited for sounds with soft onsets, 
one of the shortcomings of the phase deviation detector is its susceptibility 
to phase distortion and noise in low-energy components. Refined techniques 
include the weighted phase deviation and variations of the complex domain 
method, the latter combining both phase and magnitude information (Dix-
on, 2006; Duxbury et  al.,  2003).  Finally, Collins (2005b) used the constant-Q 
pitch estimator (Brown &  Puckette, 1993) as the primary feature driving an 
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onset  detection algorithm targeting pitched non-percussive instruments. The 
 algorithm  incorporates vibrato suppression to better emphasise note transi-
tions, outperforming the phase deviation algorithm of Bello et al. (2004)

Böck and Widmer (2013a) also proposed an onset detector with vibrato 
suppression, based on the common spectral flux method. The detector, called 
SuperFlux, uses a maximum filter applied to a logarithmic-frequency scaled 
spectrogram to better track spectral trajectories. The performance of Super-
Flux outperformed the pitch-based detector of Collins (2005b) and another 
specialised detector targeting pitched non-percussive sounds (Schleusing 
et al., 2008). A second algorithm, the ComplexFlux, also based on differences 
in magnitude spectra was later developed (Böck & Widmer, 2013b) to suppress 
both vibrato and tremolo in solo pitched instruments. Figure 9.5 shows the 
temporal waveform and spectrogram of a recording of a violinist, playing with 
a détaché bowing style, from which four odfs have been extracted. The signal 
was pre-processed by applying a 3rd order Butterworth high-pass filter to re-
move low-frequency noise picked up by the clip-on microphone. The simplest 
of detectors, which we have found to work well on signals with well-defined 
disconnected notes, is the Log hfc, obtained by applying the first-order differ-
ence to the logarithm of the frequency-weighted energy.

4.2.2 Classification Based Onset Detection
In recent years, machine learning techniques have been employed to over-
come the issue of source-dependent onset detectors (Zhu et al., 2014) as well as 
establishing more sophisticated detection functions by learning directly from 
the human annotated datasets traditionally used to evaluate the aforemen-
tioned heuristic approaches (Davy & Godsill, 2002; Eyben et al., 2010; Lacoste &  
Eck, 2007; Marchi et al., 2014; Marolt et al., 2002; Toh et al., 2008). In general, the 
task is treated as a classification problem where spectral frames extracted from 
the audio signal are classified as being onsets or non-onsets. Supervised ma-
chine learning techniques such as Support Vector Machines (svm) and Gauss-
ian Mixture Models (gmm) have been employed (Kapanci & Pfeffer, 2004; Toh 
et al. 2008) to handle pitched non-percussive instruments such as the singing 
voice where “soft” onsets often occur between smooth pitch transitions and 
tend to be accompanied by complex modulations in pitch and amplitude.

Neural networks have proven successful in automatically locating onsets in 
a range of musical signals and define the current state-of-art (Böck et al., 2012a; 
Eyben et al., 2010; Marchi et al., 2014; Schluter & Böck, 2014). These methods 
use features such as cent-scaled magnitude spectrograms and linear predic-
tion errors derived from multi-resolution spectra as inputs to a neural network 
which has been trained using binary labelled features to discriminate between  
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Figure 9.5 Temporal waveform, log magnitude spectrogram and four onset 
detection functions (odf) extracted from a violin recording. The odfs 
have been standardised by setting their means to zero and standard 
deviations to one.

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



Elliott et al.200

<UN>

onsets and non-onsets. Eyben et al. (2010) and Marchi et al. (2014) used long 
short-term memory (lstm) models, a form of recurrent neural network (rnn) 
that provides complete access to past and future information over long time 
periods. These systems are therefore able to model the context in which on-
sets occur. Both systems were evaluated against traditional detection methods, 
(e.g., those presented by Bello et al. (2005) and Dixon (2006)), and showed su-
perior performance with respect to F-measure (see Section 4.2.3), regardless 
of onset type and are therefore considered to be robust. Böck et al. (2012a) 
developed a real-time online version of the offline rnn method (Eyben et al., 
2010), which although not as accurate, outperformed existing non-ML onset 
detectors (see also Böck et al., 2012b). Schluter and Böck (2013, 2014) enhanced 
their offline algorithm by replacing the rnn with a convolutional neural net-
work (cnn), which requires less manual pre-processing and yields superior 
performance.

4.2.3 Performance and Considerations
Today’s music onset detection methods are typically evaluated using human-
annotated datasets of real-world acoustic sounds subdivided into classes based 
on instrument type. Although the manual annotation process is thorough and 
involves multiple assessment procedures performed by 3–5 experienced in-
dividuals, it is nonetheless subjective, thus blurring the distinction between 
physical onset and perceptual onset. Because of this uncertainty, detected on-
sets are deemed valid if within 50 ms of the subjective position (Bello et al., 
2005), although a lower tolerance of 25 ms has been used by some authors 
(Böck et al., 2012b), especially for percussive sounds where physical onsets are 
well-defined (Collins, 2005a). Similar to those described in section 4.1.3, stan-
dard evaluation metrics include precision (P), recall (R) and F-measure (F), 
defined respectively in Eq. 3–5.
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Here, cO  is the number correctly detected onsets, fpO  is the number of false 
positives and fnO  is the number of false negatives. In offline settings one might 
favour high recall over precision, since there is greater chance that the detector 
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is simply reacting to noise or modulations in the signal unrelated to onsets. In 
this respect, it is less subjective to manually remove data points than to add 
them.

Table 9.1 gives the average F-measures by instrument category for four of 
the best onset detectors submitted the 2015 onset detection contest run by the 
Music Information Retrieval Evaluation eXchange2 (mirex). Both Universal 
(Böck et al., 2015; Eyben et al., 2010) and Fusion (Chen, 2015) algorithms use 
probabilistic methods, whereas SuperFlux (Böck & Widmer, 2013a) and Com-
plexFlux (Böck & Widmer, 2013b) are refined versions of two classic spectral-
based algorithms. As with the mirex results, The detectors are ranked by the 
average of their class means, though we have omitted the third best ranking al-
gorithm as it is an online version of the Universal detector (Böck et al., 2012a). 
For this dataset, the four techniques perform similarly over all classes (around 
80%) but there are clear differences between the algorithms within each cat-
egory. For example, the probabilistic methods outperform the simpler flux 
algorithms in the majority of classes with a few exceptions (e.g., solo singing 
voice). This may be attributable to a lack of training data and/or because the 
flux detectors – especially ComplexFlux – were designed to better handle 
instruments with strong vibrato and tremolo. For all algorithms, performance 
appears to deteriorate for the voice, sustained strings and wind  instruments,  

2 http://www.music-ir.org/mirex/wiki/2015:Main_Page

Table 9.1 Summary of average F-measures for four state-of-the-art onset detectors submitted  
to 2015 mirex audio onset detection contest.

Class Universal Fusion Complex-
Flux

Super-
Flux

Mean 
(sd)

Complex 79.4 79.5 75.7 77.5 78.0 (1.8)
Poly pitched 94.1 93.9 91.7 91.6 92.8 (1.4)
Solo bars & bells 100.0 100.0 96.5 96.7 98.3 (2.0)
Solo brass 82.1 77.0 75.3 76.6 77.8 (3.0)
Solo drum 93.1 93.1 93.1 92.4 92.9 (0.3)
Solo plucked strings 90.9 91.5 89.7 89.8 90.5 (0.8)
Solo singing voice 52.1 55.3 60.4 60.6 57.1 (4.1)
Solo sustained strings 72.9 66.9 57.5 58.8 64.0 (7.2)
Solo winds 74.0 72.2 74.6 68.6 72.3 (2.7)
Mean 
(sd)

82.1  
(13.8)

81.0 
(13.9)

79.4 
(13.4)

79.2
(13.5)
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which might be explained by difficulties in detecting softer onsets and/or that 
the human annotations were more in line with perceptual attack time rather 
than the physical onsets picked up by the algorithms. The average recall (and 
precision) across all test stimuli for the four algorithms was: Universal – 87.9% 
(86.2%); Fusion – 86.2% (87.0%); ComplexFlux – 84.3% (86.8%); Spectral-
Flux – 85.6% (85.4%).

The choice of algorithm for detecting sonic events is evidently dependent 
on the both source type of the technical requirements of a given application. 
When studying synchronisation in musical performance, the measurement of 
player timing must be sufficiently accurate to reflect the tempo of the piece 
and capture salient asynchronies between the note onsets of each player and 
those of an external auditory stimulus such as a metronome and/or the note 
played by respective partners. For example, capturing small asynchronies in 
timing is imperative when studying how performers correct for deviations 
from an external beat (Vorberg & Wing, 1996) or from fellow musicians (Rasch, 
1979, Wing et al., 2014), or how players utilise asynchrony for expressive pur-
poses (Palmer, 1996). In general, methods based on amplitude envelope follow-
ing provide the highest temporal resolution and are computationally efficient 
compared to frequency-domain and especially ml approaches. The latter are 
more suitable for acoustic sources with soft attacks and complex modulations 
following the onset, such as those produced by bowed string instruments, flute 
or the singing voice. When using frequency-domain methods, it is important to 
consider the parameters used to configure the time-frequency decomposition, 
such as window length and window hop size in the case of the stft. For ex-
ample, reducing the window hop size improves temporal precision at the cost 
of increasing the workload and smoothing variations in the resulting detection 
function. The choice of window size, which defines the temporal resolution, is 
signal-dependent and therefore multi-resolution analysis is more favourable 
in the case of complex signals.

In short, it is preferable to employ an offline onset detector, which, along 
with the peak-picker, can be tuned for maximum accuracy. With sufficient 
training data, probabilistic multi-resolution methods are robust, but one 
should be cautious of the quality of the subjective data used to train the classi-
fication. For more objective measures of onset, the flux methods can be chosen 
and combined with other detectors to increase the likelihood of capturing new 
events based on changes across multiple signal features. Most state-of-the-art 
onset detectors output onset times to text files which, along with the audio 
signal, can be imported to audio analysis software such as Sonic Visualiser 
 (Cannam et al., 2010) for cross-validation using displays of spectrograms and 
other signal features, and vari-speed playback.

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



203Event Based Methods

<UN>

5 Analysis and Modelling

5.1 Alignment
Once the challenge of accurate onset or event detection has been achieved, 
the standard measures of analysis are relatively simple. However, to analyse 
synchrony between the events of two or more independent sources (e.g., the 
heel strikes of a group of people walking or the auditory onsets of a string en-
semble) the onsets need to be aligned to understand which event from one 
source is temporally related to an event from the other source(s). Here we de-
scribe an approach to pairwise-align response onsets to the cue onsets (Elliott 
et al., 2009b). Note, that typically for multi-person alignment, there is ideally 
a common vector of ‘cue’ onsets to which all the response onsets from each 
group member can be aligned to. This may be an external metronome stimulus 
or the movements of the lead person in the group, for example.

In this approach we use a dynamic programming method to find the short-
est distance between response and cue onsets (Figure 9.6). Starting with two 
vectors, one containing the ‘cue’ onsets, m (this could be another person’s 
movement onsets, or a fixed stimulus such as a metronome); the other con-
taining the response onsets, t. The length of m and t do not need to be equal. 
We subsequently make a matrix of squared distances, d, between each cue on-
set and each response onset. Alignment occurs by matching up each response 
onset to the closest (i.e., shortest squared distance) cue onset. If a cue onset 

Calculate Asynchrony
= Aligned response onset time - metronome onset time

For each metronome onset: Check how many
responses are aligned to it (from min. distances)

Find minimum distance in each row

Calculate squared distance of each element

One response aligned,
no further action

No responses aligned,
missed tap?, Insert NaN

Multiple responses aligned,
double tap?, f ind closest, discard the rest

No. Aligned

Figure 9.6 Flowchart of the algorithm used to align onsets between two sources  
(taken from Elliott et al., 2009b).
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has no matching response, then a NaN is inserted. If a cue onset has multi-
ple matching responses, we first check to see if the previous onset is empty 
(NaN). If so, we assign the earlier response to the previous cue onset. Of the 
remainder we assign the response, which has the shortest distance to that cue  
onset.

5.2 Calculating Asynchrony and ioi/isi
Once the onsets of the participant(s) have been aligned to either an external 
cue or other participant onsets, calculating the time difference or asynchrony 
(A; Eq. 6) between related onsets and the IOIs (also labelled as inter-stimulus 
intervals, isi for cue onset intervals; Eq. 7) is relatively trivial.

 = −k k kA t m  (6) 

 1+= −k k kIOI t t  (7)

where kt is the k th response onset and km is the k th cue onset.

5.3 Participant Outliers
Sensorimotor synchronisation analysis can be very sensitive to outliers. Outli-
ers will generally emerge in the latter stages of analysis, where the ioi or the 
asynchronies have been calculated. For example, a missed movement onset to 
a cue stimulus with an interval of 500ms, will suddenly introduce an ioi of 1000 
ms. Another common issue, occurs when someone’s movement onset occurs 
very late, or very early, relative to the comparative cue onset. This will result in 
a phase wrapped asynchrony (e.g., one that is assigned, via alignment, as a late 
response to the preceding cue onset rather than an early response to the cur-
rent cue, or vice-versa). Both these occurrences will result in large within-trial 
standard deviations (sd) emerging for the ioi and asynchronies, respectively. 
In fact, it is useful to become familiar with the range of ioi and/or asynchrony 
sd you would expect from a ‘good’ trial. This helps to spot potentially errone-
ous trials during analysis. As an example, for a simple finger tapping task to an 
auditory metronome with an isi of 500 ms, one would expect the both the ioi 
and asynchrony sd to be in the range of 15–30 ms. Values far exceeding this 
range suggest the trial should be examined in more detail.

Outlier removal must be dealt with methodologically and consistently. Us-
ing the iois to find outliers is often the simplest and most robust method. 
Working with asynchronies is much more challenging. A robust approach for 
detecting ioi outliers is the inter-quartile range method. In Matlab, using the 
median command to find the median ioi of the trial data and then the iqr 
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command to find the inter-quartile range, the threshold for upper and lower 
outlier values is:

( ) ( )
( ) ( )

threshUpper median IOI N iqr IOI ;

threshLower median IOI – N iqr IOI ;

∗

∗

= +

=

Where ioi is a vector of iois calculated from a trial. N defines how ‘strong’ 
the outlier detection function is. N=3 should be the minimum and will heavily 
cleanse the data, while N=6 will be more conservative and only remove ex-
treme outliers.

Matlab’s find command can subsequently be used to locate values  exceeding 
either the upper or lower threshold and can be removed from the ioi vec-
tor. Removal will usually consist of replacing the value with NaN and hence-
forth using nanmean, nanstd is required to calculate the mean and sd of the 
cleansed iois. However, if cross-correlation or other calculations relying on a 
continuous series are to be applied, then an alternative replacement method 
should be used (e.g. replacing with the average (median) value or similar).

The removal/replacement of iois should be reflected in the corresponding 
Asynchrony vector. Assuming ioi and A are calculated as defined in Eq. 6–7, 
then removal of IOIk should result in removal of Ak+1.

Identifying outliers from asynchrony data is more challenging. Recall, the 
alignment process will allocate a response onset to a cue onset within the 
range −ISI/2 to ISI/2, where isi is the inter-stimulus interval of the cue. There-
fore, given all asynchronies will be bound within this range, there are no out-
liers as such. However, if phase wrapping occurs there will be sign changes 
where the onsets go from being large and negative to large and positive, or vice 
versa. This corresponds to drift (see Figure 9.7) where the participant is not 
synchronising with the cue and therefore asynchronies become increasingly 
negative until they hit the lower bound and subsequently the next response is 
closer to previous cue onset but with a positive asynchrony.

There is little that can be done with linear analyses in these scenarios. 
The sd becomes very large when these discontinuities occur. And given 
that typically the presence of drift suggests the participant isn’t synchronis-
ing to the cue, it is often a case of discarding trials where this occurs. There 
are occasions where phase-wrapping is likely and of interest (e.g., analys-
ing data where the response and cue have differing tempos). In these cases, 
it is recommended that circular statistics be used to analyse the data. Cir-
cular mean and sd can be used as an alternative without being susceptible 
to the phase wrapping discontinuities. Further details of circular statistics 
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are beyond the scope of this chapter but an excellent free toolbox for Mat-
lab is available (Berens, 2009; http://www.mathworks.com/matlabcentral/
fileexchange/10676-circular-statistics-toolbox--directional-statistics-).

5.4 Cross- and Auto-Covariance and Event Based  
Synchronisation Models

It is often useful to measure the auto-covariance of the iois and asynchro-
nies, or the cross-covariance between two ioi / asynchrony time series. The 
auto-covariance shows the dependency between current and past time-series 
values. Wing and Kristofferson (1973) proposed a model for tapping without 
an external stimulus that predicts that finger tapping intervals have a lag -1 
dependence (resulting in a short-long-short-long pattern). The model follows 
the hypothesis that tapping is based on two internal processes: time keeping 
(that maintain a temporal interval) and a motor action (that is a result of the 
execution of a given motor command). The model can be written as: 

 1+= + −k k k kIOI T M M  (8)

Where, kIOI  is the kth ioi (see Eq. 7) and kT  and kM  are the timekeeper interval 
and motor delay respectively.

1

isi/2

–isi/2

As
yn

ch
ro

ny

3 5 7 9

Event No.

11 13 15 17 19 21

Figure 9.7 Typical pattern of asynchronies when participant is exhibiting drift – i.e. not 
 synchronising with the cue. Note the phase wrapping occurs around +/− ISI/2  
and can result in highly inflated asynchrony variance.
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The model predicts that:

 ( )g s= −I
2

IO 1 T  (9)

 ( )g s s= +I
2

O
2

I 0 2T M  (10)

Where ( )I kg is the lag k auto-covariance, 2
Ts is the timekeeper variance, 2

Ms
is motor variance.

The model has become a highly efficient tool to characterise tapping 
(Wing, 2002). Empirical results indicate several intriguing relations between 
timekeeper variance, motor variance, and tempo. Namely: (a) Motor noise re-
mains constant when the base tapping tempo is changed, but timekeeper vari-
ance increases with tempo; (b) Motor noise is smaller than timekeeper noise  
( )2 2<s sM T

The success of the model led to its generalisation to the case of tapping to 
an external metronome. Vorberg and Wing (1996) proposed a revised model 
which included a correction gain parameter to describe the process of syn-
chronising to an external cue. The correction gain, α (often also referred to as 
phase correction), explains how much of the previous error (asynchrony) is 
corrected for in the next movement. 

 1+= + + −k k k k kIOI A T M Ma  (11)

The gain is stable in the range, 0 2≤ ≤a , where a = 1 is full correction, a > 1 
is overcorrection, and a < 1 is undercorrection. In most cases, empirical esti-
mates of a  are usually in the range of 0.5 to 1.

In the case of a relatively stable metronome (no significant tempo changes), 
the correction gain can be deduced simply by calculating the cross-covariance 
between the cue and response intervals, if the cue intervals do not have zero 
variance (i.e., an isochronous metronome has zero interval variance). The rela-
tionship between the covariance and the correction gain is as follows:

 ( ) ( ) ( )g a s− = −α − ≥1 ^ j 1 _ ^ jC 2, 0I jC  (12)

where, γCI( j) is the cross-covariance function between the stimulus response 
intervals of lag j and σc2 is the variance of the stimulus intervals. The model of 
Eq. 11 can be generalised to ensemble synchronisation: 

 , 1+= + + −∑k i k i k k ki
IOI A T M Ma  (13)
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Where ,k iA are the asynchronies between the studied player all other players, 
and ia  is the phase correction parameter associated with adapting to a specific 
player i .

Note that this model is a generalisation of an ensemble synchronisation 
model proposed by (Wing, Endo, Bradbury, & Vorberg, 2014) that has been 
used to study synchronisation within string quartets. Their model is identical 
to Eq. 13, but with the assumption that the parameter 2 0,=Ms  and therefore 

1+ −k kM M  in equation Eq. 13 does not play a role.
It is possible to generalise the model of equation Eq. 11 to the case where 

there are substantial tempo changes (Schulze, Cordes, & Vorberg, 2005). Here it 
is often assumed that an additional period correction process occurs (Repp & 
Keller, 2008): 

 1−= −k k kAt t b  (14)

Where ( )=k kmean Tt  and b represents the period correction constant.
The model can be cast as a standard Autoregressive Moving Average (arma) 

model (Diedrichsen, Ivry, & Pressing, 2003) 

 ( )1 1 1 1 12− − − + −− = − + + + − + − +k k k k k k k k kIOI IOI A A T T M M Ma b a  (15)

Here kT  and kM  are two independent random variables with a fixed mean.

5.5 Bounded General Least Squares (bGLS) Method for  
Parameter Estimation

While the cross- and auto-correlation approaches to parameter estimation of 
the linear phase correction model are relatively simple to compute, their ap-
plication is limited to one participant with small tempo variations. In the case 
of ensemble synchronisation, the estimation procedure based on the auto- 
covariance function requires a slow iterative model fitting approach.

Moreover, recent work (Jacoby, Keller, Repp, Ahissar, & Tishby, 2015) showed 
that the structure of the models described above generates an inherited de-
pendency in the accuracy of estimating the parameters a  ,  2

Ms and 2
Ts .  

Since the parameters are inherently interdependent, they cannot be jointly 
estimated by the autocovariance method or by any other method without 
using further assumptions. Therefore, directly applying the autocovariance 
method or standard linear estimation techniques such as the Matlab armax 
command on data will often lead to unreliable estimations. While the prob-
lem exists also for single participant synchronisation with a metronome with 
small tempo changes, it becomes much more notable in the case of ensemble 
synchronisation or when there are large tempo changes. Fortunately, there is 
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a simple solution to this problem. As mentioned above it has been empirically 
observed that the motor noise is smaller than timekeeper variance. If this ad-
ditional simple constraint is taken into account in the estimation  process the 
 interdependency problem is practically resolved (Jacoby et al., 2015). More-
over, the group further proposed an algorithm, the bounded general least 
squares (bGLS) method that can estimate the parameters in case of a single 
person and ensemble synchronisation as well as tempo changing sequences 
(Jacoby, Tishby, Repp, Ahissar, & Keller, 2015).

The method has been applied in music related studies, re-analysing the ear-
lier quartet study by Wing et al., (Jacoby et al., 2015) and investigating metrical 
structure in Malian jembe drumming (Polak, Jacoby, & London, 2015). In addi-
tion, it has been applied to a group sensorimotor synchronisation task in order 
to estimate changes in correction along a chain of individuals moving in time 
with each other (Honisch et al., 2016).

The mathematical derivations of the method are fully explained in the two 
aforementioned publications (Jacoby et al., 2015) and, hence, won’t be reiter-
ated here (for a short overview of the method see Elliott, Chua & Wing, 2016). 
However, the bGLS Toolbox for Matlab is provided with example code for this 
chapter (see book’s GitHub repository).

6 Conclusion

We have presented methods for collecting, conditioning and analysing the 
timing of movements, ranging from simple finger tapping where response 
events can be captured by switches, force transducers or motion capture sys-
tems to the complexities of music performance where the data commonly 
requires acoustic recording, or in some cases, motion capture data. Regard-
less of the particular technology for capturing timing data, our goal has been 
to maximise the measurement accuracy in order to better characterise, not 
only the accuracy of timing in terms of mean and variability, but also the 
form of variability, in order to reveal the underlying mechanisms that are so 
often key to the skilled performance of complex sequential activities such as 
music and dance.
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Measuring Temporal Preparation

Mariagrazia Capizzi and Ángel Correa

1 Introduction

Temporal preparation is a fundamental cognitive ability that enables us to an-
ticipate the moment in time (in the millisecond to second range) at which a 
relevant event might occur. At an operational level, this means that when stim-
ulus onsets can be predicted, both accuracy and response time to such stimuli 
will be improved compared to stimuli with unpredictable onset (Correa, 2010; 
Nobre, Correa, & Coull, 2007). Theoretically, temporal preparation is linked to 
the field of time perception since the ability to anticipate when something is 
going to occur does involve the capacity to compute the passage of time. It 
should be noted, however, that experiments on temporal preparation require 
using time rather than consciously estimating it (i.e., time estimation and re-
production tasks; e.g., Grondin, 2010; Ivry & Hazeltine, 1995; Chapters 2 and 4, 
this volume).

Early studies of temporal preparation focused on the behavioral effects 
that the manipulation of the “foreperiod” (timing during which a warning sig-
nal precedes a target stimulus) had on participants’ performance (Woodrow, 
1914). Subsequent studies investigated whether temporal preparation could be 
 voluntarily acquired following a symbolic and predictive temporal cue (e.g., 
Coull & Nobre, 1998; Miniussi, Wilding, Coull, & Nobre, 1999; Nobre, 2001). 
More recent work has explored temporal preparation driven by the presen-
tation of regular rhythmic patterns (e.g., Cutanda, Correa, & Sanabria, 2015; 
Jones, Moynihan, MacKenzie, & Puente, 2002; Lange, 2010; Sanabria, Capizzi, &  
 Correa, 2011).

These complementary research approaches have identified the basic fea-
tures of the temporal preparation effects that will be covered in the following 
sections of this chapter. Each section provides a brief description of one of the 
paradigms used to investigate temporal preparation along with an example of 
how to measure and interpret the behavioral data usually obtained in the stud-
ies employing such a paradigm. For a thorough review of the cognitive pro-
cesses and neural mechanisms underlying temporal preparation, the reader is 
referred to Nobre and Coull (2010).
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2 Foreperiod and Sequential Effects

In the foreperiod paradigm, a warning signal precedes a target stimulus, to 
which the participant is to respond (see Coull, 2009; Niemi & Näätänen, 1981, 
for reviews). The foreperiod is the time interval between warning signal and 
target. It represents the period in which temporal preparation has been shown 
to take place. Consider, for example, the simplest case with only two possi-
ble foreperiods (e.g., 1000 ms – short vs. 3000 ms – long). The variability with 
which short and long foreperiods are presented in different trials will selec-
tively influence participants’ reaction times (rts). When there is no variability 
and just one foreperiod is administered in a block of trials (i.e., fixed foreperiod 
design), it is typical to find shorter rts with short foreperiods, a phenomenon 
known as the “fixed foreperiod effect” (e.g., Bausenhart, Rolke, & Ulrich, 2008; 
Mattes & Ulrich, 1997; Vallesi, McIntosh, Shallice, & Stuss, 2009a). Conversely, 
when short and long foreperiods are randomly intermixed with equal prob-
ability within a block (i.e., variable foreperiod design), shorter rts will be as-
sociated with long foreperiods (i.e., the “variable foreperiod effect”; hereafter 
simply referred to as the foreperiod effect; e.g., Drazin, 1961; Mento, Tarantino, 
Vallesi, & Bisiacchi, 2015; Niemi & Näätänen, 1981; Woodrow, 1914). The discrep-
ant findings between fixed and variable foreperiod designs can be accounted 
for by two separate factors: time estimation and conditional probability of target 
occurrence.

On the one hand, in a fixed foreperiod paradigm, it is likely that participants 
use the warning signal as a reference to estimate the time at which the tar-
get stimulus will be presented (Klemmer, 1956, 1957; Niemi & Näätänen, 1981). 
Given that uncertainty in time estimation increases as a function of the dura-
tion of the interval being estimated (Gibbon, 1977), it will be more difficult to 
anticipate the target onset in long than in short foreperiod blocks, which will 
lead to longer rts in the long foreperiod blocks.

On the other hand, in a variable foreperiod paradigm, the conditional  
probability of target onset increases with the passage of time. Accordingly, 
participants learn that if the target does not appear at the short foreperiod, 
it will necessarily do so at the long foreperiod (Elithorn & Lawrence, 1955). 
Under this “strategic” view of the foreperiod effect, participants’ temporal 
 expectation would be higher for targets occurring at the long foreperiod, thus 
explaining the decrease in rt observed with long foreperiod trials of variable 
foreperiod studies.

The study by Vallesi, Lozano, and Correa (2013) will be used to explain how 
to measure the variable foreperiod effect. Here, we will consider only the 
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data from the blocks with a short inter-trial interval (iti) of Experiment 2 
( simple-RT task). An adapted version of the original experiment can be found 
in book’s GitHub repository.

In the study by Vallesi et al. (2013), the variable foreperiod design included 
an auditory warning signal (a 1500 Hz pure tone) and a visual target (a square 
or a triangle) with a foreperiod of either 1000 or 3000 ms. Each foreperiod was 
presented randomly with the same probability. A yellow cross, which served as 
the fixation point, was presented simultaneously with the warning signal and 
remained on the screen until the target appeared. The participants’ task was 
to respond to the onset of the target by pressing the space bar with their index 
finger (see Figure 10.1A).

As can be seen in Figure 10.1B, participants’ rts were shorter for the long 
foreperiod than for the short foreperiod. Such a difference reflects the forepe-
riod effect typically found in a variable foreperiod design. Several studies have 
replicated the foreperiod effect across different foreperiod ranges and type of 
tasks (Niemi & Näätänen, 1981). Hence, an interim conclusion from this phe-
nomenon is that our cognitive system can exploit the temporal information 
implicitly provided by task context to improve performance.

Another type of phenomenon that further proves the increase in sensitiv-
ity to events having predictable timing is generally termed “sequential effects” 
(e.g., Capizzi, Correa, Wojtowicz, & Rafal, 2015; Los & van den Heuvel, 2001; 
Los, 2013; Steinborn & Langner, 2012; Steinborn, Rolke, Bratzke, & Ulrich, 2008; 
Vallesi & Shallice, 2007; Woodrow, 1914). Sequential effects take into account 
the influence that the previous foreperiod duration has on preparation in the 
current foreperiod. Thus, following the variable foreperiod procedure, the 
analysis should now consider whether the previous foreperiod was short or 
long. To illustrate this point, we turn back to the experiment by Vallesi et al. 
(2013). When results are analyzed considering the previous foreperiod as a fac-
tor (pre-Short vs. pre-Long), the pattern usually conforms to the one depicted 
in  Figure 10.1C. As shown in this figure, participants’ rts were overall shorter 
when the  previous foreperiod was short rather than long. More importantly, a 
significant interaction between previous foreperiod and current foreperiod du-
ration was also observed. This interaction reflects the “asymmetry” of sequen-
tial effects. That is, on current short foreperiod trials participants’ responses 
were faster after a previous short foreperiod as compared to alternation from 
a previous long foreperiod (in Figure 10.1C, the two conditions are associated 
with 316 and 361 ms, respectively). Conversely, on current long foreperiod tri-
als, participants’ responses were equally fast irrespective of whether the previ-
ous foreperiod duration had been short or long (in Figure 10.1C, 305 ms for both  
conditions).
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Since the first demonstration of the presence of sequential effects in  temporal 
preparation (Woodrow, 1914), there have been several replications  suggesting 
that such effects are quite robust. A comprehensive overview of the cognitive 
models that have been developed to explain sequential effects is beyond the 
scope of this chapter (for further information, see Capizzi et al., 2015; Los & van 
den Heuvel, 2001; Steinborn et al., 2008; Vallesi & Shallice, 2007, and the follow-
ing book chapters: Los, 2010; Vallesi, 2010).

iti

950 or 2950 ms1000 ms 50 ms

400B) C)

A)

350
361

339

316

Foreperiod

305305

305

Pre–Short
Pre–Long

300

250

400

350

300

250
Short Long

Foreperiod

rt
s (

m
s)

Short Long

Time

300 ms

Warning signal Foreperiod Target

Figure �0.� (A) Experimental design. The variable foreperiod paradigm used by Vallesi, 
Lozano, and Correa (2013). In the original study, the cross was displayed in 
yellow instead of gray. Each trial started with the iti: a black screen lasting 
1000 ms. Subsequently, the auditory warning signal and the fixation cross were 
presented. The fixation cross remained on the screen for a variable foreperiod 
interval of 1000 or 3000 ms. Then, the target (a square or a triangle) appeared 
and participants had to respond to it by pressing the space bar. The target disap-
peared after either the participants’ response or after 1.500 ms. (B) The foreperiod 
effect. Participants’ rts in ms are plotted as a function of the Foreperiod duration 
(short, long). The foreperiod effect is indexed by shorter rts at the long forepe-
riod. (C) Sequential effects. Participants’ rts are plotted as a function of both 
the previous foreperiod duration (label Pre- in the figure legend) and the current 
foreperiod duration. The asymmetry of sequential effects is given by shorter rts 
for the short-short foreperiod sequence as compared to the long-short foreperiod 
sequence. Procedure and data for both the foreperiod and sequential effects are 
adapted from Vallesi, Lozano and Correa (2013).
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A general agreement exists that sequential effects, unlike the foreperiod ef-
fect, are mediated by automatic processes. This claim is bolstered by  converging 
evidence provided by behavioral (Vallesi, Arbula, & Bernardis, 2014; Vallesi 
et  al., 2013), neuropsychological (Triviño, Correa, Arnedo, & Lupiáñez, 2010; 
Vallesi et al., 2007a), developmental (Vallesi & Shallice, 2007), and transcranial 
magnetic stimulation (Vallesi, Shallice, & Walsh, 2007b) studies, which dissoci-
ated foreperiod and sequential effects. For example, the foreperiod effect only 
has been shown to rely on the functioning of prefrontal structures related to 
executive processes, whereas it has been shown not to be the case for sequen-
tial effects (Triviño et al., 2010; Vallesi et al., 2007a). These dissociations demon-
strate that temporal preparation can be flexibly built up on the basis of distinct 
controlled and automatic processes. A clear example of a controlled process of 
temporal preparation is given by “temporal orienting of attention”, which is the 
focus of the next section.

3 Temporal Orienting of Attention

Coull and Nobre (1998) developed a temporal variant of the Posner’s spatial 
orienting task (Posner, Snyder, & Davidson, 1980) to test whether attention can 
be voluntarily oriented in time. In a typical implementation of the temporal 
orienting task (see Correa, 2010), participants have to respond to the onset of 
a target stimulus that can appear either early in time (e.g., after a short fore-
period of 1000 ms) or late in time (e.g., after a long foreperiod of 3000 ms). A 
symbolic cue (e.g., a short or a long line) precedes each target presentation 
indicating whether the target is likely to appear early or late, respectively. On a 
large percentage of trials (e.g., 75%), the cue validly predicts the length of the 
foreperiod (valid condition). On the remaining trials, the target will appear 
either earlier or later than expected (invalid condition). As shown in Figure 
10.2B, this design gives rise to four types of trials. The ‘early cue-short foreperi-
od’ and the ‘late cue-long foreperiod’ types of trials are valid, whereas the ‘early 
cue-long foreperiod’ (‘delayed’, cf. Coull, 2011) and the ‘late cue-short forepe-
riod’ (‘premature’) trials are invalid.

Figure 10.2 depicts the temporal orienting task used by Capizzi, Sanabria 
and Correa (2012) and their results, that is, mean rts from the single-task 
condition plotted as a function of Cue Validity (valid, invalid) and Foreperiod 
(short, long). An adapted version of the original experiment can be download-
ed from the book’s GitHub repository.

As shown in Figure 10.2C, participants’ rts were shorter for valid trials as 
compared to invalid trials. This finding indexes the temporal orienting (or 
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Figure �0.� (A) Experimental design. The temporal orienting task used by Capizzi, Sanabria, 
and Correa (2012). In the original study, the cue (here displayed in gray) could 
be filled with one of three colors (red, green, or blue). Each trial started with the 
presentation of a blank screen for a random interval between 500 and 1000 ms. 
The temporal cue (a short or a long line) was then displayed for 750 ms. The short 
line indicated that the target was likely to appear early (after a short foreperiod), 
whereas the long line indicated that the target would probably appear late (after 
a long foreperiod). Following the cue, the screen remained blank for a variable 
foreperiod of 1000 or 3000 ms. After the foreperiod elapsed, the target stimulus 
(a white dot) appeared in the center of the screen for a duration of 100 ms. Partici-
pants had to respond to the target onset by pressing the space bar with their 
index finger. The next trial began following the response to the target or after 1100 
ms. (B) Types of trials. The matching between early cue and short foreperiod and 
between late cue and long foreperiod gives rise to valid trials (75% validity rate). 
Conversely, the combination of early cue and long foreperiod produces invalid 
‘delayed’ trials since the target appears later than expected. Lastly, the combina-
tion of late cue and short foreperiod creates invalid ‘premature’ trials in which the 
target appears earlier than expected. (C) Temporal orienting effects. Participants’ 
rts are plotted as a function of Cue Validity (valid, invalid) and Foreperiod dura-
tion (short, long). Note that temporal orienting effects are significant at the short 
foreperiod only. This is due to the fact that when the target does not show up after 
the short foreperiod (as invalidly predicted by the early cue), participants can 
re-orient their attention to the long foreperiod, thus counteracting the negative 
consequences on performance of the invalid prediction. The procedure and data 
are adapted from Capizzi et al. (2012).
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 validity) effects. These effects are usually restricted to the short foreperiod 
only, as demonstrated by the interaction between Cue Validity and Foreperiod. 
Turning to the figure, a rt benefit can be observed for validly early cued targets 
(early cue-short foreperiod) as compared to ‘premature’ targets that invalidly 
occur earlier than expected (late cue-short foreperiod). By contrast, at the long 
foreperiod, temporal orienting effects are smaller (or can even be absent). This 
is because if the target does not appear at the short foreperiod as predicted by 
the early cue, it is possible to ‘infer’ that it will appear later, thus enabling at-
tention to be re-oriented to the long foreperiod (invalid ‘delayed’ trials in the 
figure) (e.g., Correa, Lupiáñez, Milliken, & Tudela, 2004; Coull & Nobre, 1998).

In the remainder of the section, we list some practical issues that should 
be considered when designing a temporal orienting task. One issue concerns 
the cue validity rate. Most studies use cue validity rates of 75 or 80%. However, 
it is also possible to use a 100% valid cue condition and to compare it with a 
neutral one in which the cue does not provide any temporal information on 
target onset. That is, in the neutral condition the cue simply acts as a warning 
signal and the target can appear after the short or long foreperiod with the 
same frequency (50%). Use of valid-only trials encourages participants to con-
fidently rely on the cue information. This manipulation has been adopted in 
studies investigating the ability to orient attention in time in more vulnerable 
populations such as children (Mento & Tarantino, 2015; Mento & Vallesi, 2016) 
and older adults (Zanto et al., 2011).

If a researcher is interested in maximizing temporal orienting effects, it is 
possible to keep ‘early’ and ‘late’ temporal cues separate across different blocks 
of trials instead of intermixing them within trials. In that case, participants 
will be presented with early-blocks and late-blocks, each containing both valid 
and invalid trials. Specifically, the early-block will only display the cue type as-
signed to the early condition. On 75% of the trials, the foreperiod will match 
the duration predicted by the cue, whereas on 25% of the trials it will not. The 
same applies, but with the late cue-long foreperiod association, to the late-
block condition. It is important to counterbalance the order of presentation of 
early and late blocks to avoid confounding any practice or boredom effects with 
one of the two conditions. In previous studies, we have compared between-
block and within-block manipulations of temporal cues and found that the 
magnitude of temporal orienting effects were larger in the former case (Cor-
rea, Lupiáñez, & Tudela, 2006b). Moreover, we recently reported that temporal 
orienting effects elicited on a trial-by-trial basis, but not those obtained in a 
blocked design, were impaired in dual-task conditions that competed for com-
mon limited resources with the temporal orienting task (Capizzi et al., 2012). 
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A blocked manipulation of temporal cues is, thus, advisable when evaluating 
temporal orienting in populations that get tired and unmotivated after brief 
periods of time, such as frontal brain damaged patients who, notoriously, have 
troubles maintaining the focus of attention on the task at hand (see Triviño  
et al., 2011; Triviño et al., 2010).

Another factor that can affect the magnitude of temporal orienting effects 
includes cue encoding. It is recommended to employ intuitive cues that do not 
need a demanding and time-consuming decoding process. Some examples of 
previously used intuitive cues comprise symbolic figures: two concentric circles 
with the inner circle brightening for the short foreperiod and the outer circle for 
the long one (Coull & Nobre, 1998) or short and long lines (Capizzi, Correa, &  
Sanabria, 2013; Capizzi et al., 2012; Correa et al., 2014; Correa et al., 2004; Correa, 
Lupiáñez, & Tudela, 2006b; Triviño et al., 2010); letters: ‘S’ for short, ‘L’ for long 
(Zanto et al., 2011) and words: ‘early’ and ‘late’ (Correa, Lupiáñez, Madrid, &  
Tudela, 2006a).

To strengthen temporal orienting effects, it is also important to provide 
participants with enough practice trials to initially learn the specific cue-time 
interval contingencies. Moreover, participants’ instructions should explicitly 
emphasize that using the temporal cue would help them to predict when the 
target will occur.

Finally, the type of task also influences temporal orienting effects. We 
have shown, for example, that temporal orienting effects are usually larger in 
a simple-RT detection task than in a choice-RT discrimination task (Correa  
et al., 2004; Correa, Lupiáñez, & Tudela, 2006b). However, only the latter, which 
imposes strong demands on perceptual analysis, boosts visual processing as 
revealed by event-related potential (erp) measures. Otherwise, in simple RT-
detection tasks, temporal orienting typically enhances performance through 
facilitation of late motor processes (see Correa, Lupiáñez, Madrid, & Tudela, 
2006a, for a review). Of note, more sophisticated tasks than the originally em-
ployed detection and discrimination ones have been developed over the last 
years to elucidate whether temporal orienting effects can also act on processes 
requiring higher cognitive functioning. These studies showed that temporal 
orienting can modulate semantic processing (Naccache, Blandin, & Dehaene, 
2002), executive control (Correa, Cappucci, Nobre, & Lupiáñez, 2010a), and vi-
sual working memory (van Ede, Niklaus, & Nobre, 2017), thus demonstrating 
that temporal orienting effects are robust across different tasks and cognitive 
demands.

The majority of the earlier studies investigating temporal orienting have 
used symbolic and static cues as a means of orienting attention in time. 
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 However, since we live in a dynamic environment, which is intrinsically rhyth-
mic, we should also be able to generate temporal expectations following the 
regular presentation of isochronous sequences of stimuli (i.e., rhythms). This 
topic will be covered in the following section.

4 Temporal Preparation Induced by Rhythmic Cues

According to the Dynamic Attending Theory (Ellis & Jones, 2010; Large & Jones, 
1999), attention is conceived of as an endogenous oscillatory process that can 
be entrained by external rhythms. The repetition of a regular rhythmic pat-
tern will, thus, synchronize participants’ attentional oscillations, which im-
proves both accuracy and response speed to a target appearing in synchrony 
with that pattern (e.g., Bolger, Coull, & Schön, 2014; Bolger, Trost, & Schön, 
2013; Breska & Deouell, 2014; Di Luca & Rhodes, 2016; Jones et al., 2002; Lange, 
2010; Rohenkohl, Cravo, Wyart, & Nobre, 2012; Sanabria et al., 2011; Sanabria &  
Correa, 2013). It is important to note that unlike the temporal orienting effects 
described above, rhythms can automatically orient attention in time. For ex-
ample, participants’ performance is entrained by the rhythms even if they are 
instructed to ignore them (Rohenkohl, Coull, & Nobre, 2011). The automaticity 
of temporal preparation driven by auditory rhythms has been tested in du-
al-task studies that showed no decrement in performance on rhythm-based 
preparation in the context of a concurrent memory task (Cutanda et al., 2015; 
de la Rosa, Sanabria, Capizzi, & Correa, 2012).

An example of how to investigate temporal preparation driven by audi-
tory rhythms can be found in de la Rosa et al. (2012). In this chapter, we will 
only focus on the single-task data of Experiment 1. An adapted version of 
the original experiment can be downloaded from the book’s GitHub reposi-
tory. As shown in Figure 10.3A, the task was comprised of a sequence of six 
tones with a 250-ms duration each and a frequency of 700 Hz. This sequence 
could be temporally regular or irregular. The regular sequence was created 
by spacing the tones with a fixed interval of 550 ms. Conversely, in the ir-
regular rhythm each interval duration was selected randomly among the 
following values: 150, 350, 550, 750, or 950 ms. Importantly, both sequences 
included six tones and had identical duration such that the only difference 
between the two concerned the isochrony of the rhythm. The target tone, 
which appeared after a variable foreperiod (800, 1100, or 1400 ms), was a 
100-ms sound of 400 Hz. Participants had to respond to the target tone by 
pressing the “b” key on a computer keyboard. They were informed that the 
target was preceded by a sequence of sounds creating a rhythm. However, 
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Figure �0.3 (A) Experimental design. The rhythm-based temporal preparation task used 
by de la Rosa, Sanabria, Capizzi, and Correa (2012). In the original study, the 
fixation cross (a plus sign, here displayed in gray), which remained on the screen 
during the entire trial, could be filled with one of three colors (red, green, or blue). 
Each trial started with the presentation of a 50-ms blank screen. Five hundred 
milliseconds later, a regular or irregular rhythm was presented at random. To 
create the regular rhythm, as shown in the figure, all the intervals between the 
six tones had a fixed duration of 550 ms. Conversely, in the irregular rhythm each 
interval duration was selected randomly among the following values: 150, 350, 
550, 750, or 950 ms. After a variable foreperiod (800, 1100, or 1400 ms), the target 
tone (a 400-Hz sound lasting for 100 ms) was presented. Participants had to press 
the “b” key as fast as possible to the onset of the target tone. The next trial began 
following the response to the target, or after 1100 ms. (B) Regularity effects. Par-
ticipants’ rts are plotted as a function of Rhythm (regular, irregular). In line with 
the hypothesis that the presentation of a regular rhythm improves performance, 
participants were faster in responding to targets appearing after a regular 
rhythm compared to an irregular rhythm. The procedure and data are adapted 
from de la Rosa et al. (2012).

they were explicitly told that this rhythm had no bearing on the task and 
could, therefore, be ignored.

Figure 10.3B shows participants’ rts plotted as a function of Rhythm (regu-
lar, irregular). As depicted, participants were faster to detect the target that 
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 appeared after the regular rhythmic pattern compared to the target  preceded 
by an irregular sequence. This demonstrates that it is possible to develop 
temporal preparation on the basis of regular auditory rhythms. Please note 
that rhythms represent a powerful way of orienting attention in time also in 
the visual modality. Some examples of paradigms that have employed visual 
rhythms can be found in the following studies (Correa and Nobre, 2008; Correa 
et al., 2014; Doherty, Rao, Mesulam, & Nobre, 2005; Triviño et al., 2011).

As a last note, it is worth mentioning that in addition to non-predictive 
(regular vs. irregular) rhythms (e.g., de la Rosa et al., 2010; Lange, 2010), it is 
also possible to employ predictive rhythms to induce temporal preparation. 
This can be done, for example, by manipulating the pace (fast or slow) of the 
rhythmic pattern (e.g., Correa et al., 2014; Triviño et al., 2011). That is, a fast 
rhythmic pace predicts that the target would appear early, whereas a slow 
rhythmic pace predicts that the target would appear late. A rhythm-based 
benefit is also observed using predictive rhythms. However, it is difficult to 
ascertain whether this advantage is due to the exogenous effects of rhythms 
alone, or also to other endogenous processes sensitive to the temporal con-
tingency between the rhythmic pace and the moment of target onset, or to a 
mixture of both factors. It is, thus, important to take into account these fea-
tures of the experimental design when thinking of how to investigate rhythm-
based preparation.

5 Conclusions and Practical Considerations

In this chapter, we provided a general overview of the typical experimental 
procedures developed to measure temporal preparation. This conclusive sec-
tion offers some final advice that may help determine the best procedure to use 
for addressing a given research question. To this aim, we start by briefly con-
sidering the relationship between different temporal preparation phenomena 
(see Correa, 2010, for a theoretical discussion on this issue). If, for example, the 
focus of the study is measuring temporal orienting, foreperiod, and sequen-
tial effects within the same task, there are no disadvantages to using a tem-
poral orienting paradigm. Correa and colleagues (Triviño et al., 2010; see also 
Correa et al., 2010b) developed an adapted and quick version of the temporal 
orienting task that allows the evaluation of the three temporal preparation ef-
fects at the same time. By contrast, if one is interested in investigating the erp 
correlates of both temporal orienting and sequential effects, it is advisable to 
also have a neutral condition in which the temporal cue is substituted with 
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a non-informative warning signal. Otherwise, it has been suggested that the 
erp correlates of sequential effects may be masked by the controlled temporal 
orienting processing (Capizzi et al., 2013).

Another example of the reciprocal influence between different temporal 
preparation effects can be found in Sanabria, Capizzi, and Correa (2011). The 
authors showed that temporal preparation driven by auditory rhythms was 
effective at the long foreperiod only when catch-trials (i.e., trials in which a 
target is not presented) were included. This is due to the fact that when the 
target always occurs, the certainty that it will appear at the long foreperiod, 
once the short foreperiod has been passed, is so strong that it overcomes 
the benefits afforded by the auditory rhythms. The presence of catch-trials 
instead counteracts the foreperiod effect by decreasing participants’ certainty 
about target occurrence (Näätänen, 1972). Note, also, that the inclusion of 
catch-trials has been useful to unveil the effects of both temporal orienting 
(Correa et al., 2004) and sequential effects (Capizzi et al., 2015) at the long 
foreperiod.

Once the best approach to use has been established, it is critical to adapt the 
chosen paradigm according to the specific target population. As an illustrative 
example, Mento and colleagues (Mento & Tarantino, 2015; Mento & Vallesi, 
2016) have recently developed a simplified child-friendly version of the tempo-
ral orienting paradigm. In this version, children imagine being at the zoo and 
taking pictures of the animals that appear within the camera lens. They are 
instructed that the color of the lens will help them to predict when the animal 
will appear.

Other examples of research that have been fruitfully conducted in special 
populations can be found in the following studies (e.g., Droit-Volet & Coull, 
2016; Johnson et al., 2016; Johnson, Burrowes, & Coull, 2015; Mento & Valenza, 
2016; Vallesi & Shallice, 2007, for children; Bherer & Belleville, 2004; Chauvin 
et al., 2016; Vallesi, McIntosh, & Stuss, 2009b; Zanto et al., 2011, for older adults; 
Correa et al., 2010b, for individuals with high and low trait impulsivity; Marzeco-
va et al., 2013, for bilinguals). Moreover, the reader interested in investigating 
temporal preparation in clinical settings can refer to these studies (Triviño et 
al., 2016, 2011, 2010; Vallesi et al., 2007a, for neurological patients; Correa et al., 
2011, for patients with fibromyalgia).

To conclude, the increasing number of studies that have investigated tem-
poral preparation across different tasks and populations demonstrates the 
growing interest in this area of research. Future developments will, thus, in-
clude devising novel experimental designs and, importantly, linking the theory 
of temporal preparation to practice-oriented research.
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Temporal Order and Synchrony Judgments:  
A Primer for Students

Maria Kostaki and Argiro Vatakis

1 Introduction

Every day we perceive events that are multisensory, well aligned in time, and 
unified. This percept is a given fact and we rarely think that the synchrony of 
those events is not the rule but rather the exception. It is now known that the 
perceived order or subjective simultaneity of two sensory stimuli might not 
correspond to their actual physical order or objective synchrony, respectively. 
This was, however, unknown to astronomers back in the early 19th century who 
measured stellar transits (i.e., estimation of the position of a star across the 
reticules of the telescope between successive beats of a clock or  metronome) 
via the ‘ear and eye’ method. This method was considered quite accurate, how-
ever, it was later observed that astronomers’ judgments deviated from each 
other for intervals that could reach in some cases the 800 ms (e.g., Mollon & 
Perkins, 1996). These deviations eventually led Gustav Fechner and Wilhelm 
Wundt to establish the fields of psychophysics and experimental psychology, 
respectively (Aghdaee, Battelli, & Assad, 2014).

The systematic discrepancy between objective and subjective stimulus tim-
ing (i.e., order and simultaneity) was partially accounted for by sensory arrival 
latencies. That is, differences in the time needed for the signals to be detected 
by the sense organs and transmitted to the appropriate processing centers 
(Sternberg & Knoll, 1973). Light, for example, travels through the air much 
faster than sound (i.e., approximately 300.000.000 m/s for light and 343 m/s for 
sound; Spence & Squire, 2003). When detected though, a visual stimulus needs 
more time to be transduced to the retina as compared to an auditory stimulus 
to get processed by the hair cells in the inner ear (King & Palmer, 1985). Thus, 
the sensory arrival latencies are identified in two different levels, the physical 
and the neuronal level.

At the physical level, one of the parameters affecting stimulus arrival times 
is the distance of the stimulus’ origin from the observer. As the distance of the 
multisensory event (e.g., audiovisual) increases, the arrival times of the audi-
tory input lag even more than the visual ones. Take, for example, thunders in 
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the sky, first you see the illumination and then you hear the rattle. Physical 
time differences in the travelling times of light and sound signals are expected 
to be cancelled out by neural transmission differences at a distance of approxi-
mately 10 m from the observer, a distance known as the ‘horizon of simultane-
ity’ ( Pöppel, Schill, & von Steinbüchel, 1990). For audiovisual stimuli presented 
within the limits of this ‘horizon’, sound arrival times precede those of light, 
whereas beyond this horizon, the light is the signal that takes  precedence 
 (Pöppel et al., 1990). Yet, arrival latencies at both the physical and the  neuronal 
levels are not fixed (King, 2005). Nonetheless, the underlying brain mecha-
nisms manage to deal with these differences, thus, allowing the percept of 
synchrony for a large range of event distances (Keetels & Vroomen, 2012) and 
stimulus characteristics (King, 2005; Vatakis, 2013).

Stimuli presented within the horizon of simultaneity and close in time 
are perceived as synchronous even though they are physically asynchronous  
(Stein & Meredith, 1993). One potential account of how simultaneity is 
 perceived is the mechanism of the temporal window of integration (twi; e.g., 
Colonius & Diederich, 2012; King, 2005; Lewkowicz & Ghazanfar, 2009; Spence 
& Squire, 2003; van Wassenhove et al., 2007; Vatakis 2013; Vroomen & Keetels, 
2010). This ‘window’ represents the temporal range at which the brain tolerates 
asynchronies in the presented stimuli (e.g., visual or auditory leads/lags) so as 
to integrate the multisensory event and perceive the inputs as simultaneous 
(Diedrich & Collonius, 2015; Stevenson & Wallace, 2013). Research has shown 
that the twi has a sensory bias with higher tolerance to visual as compared to 
auditory leads given the naturally occurring arrival delays of the sound. Thus, 
for simultaneity to be perceived, the twi is asymmetric  characterized by a 
visual shift, which is referred to as a visual bias (i.e., the visual stimulus has 
to be presented before the auditory stimulus for synchrony to be perceived; 
Hirsh & Sherrick 1961; Lewald & Guski, 2003; Munhall, Gribble, Sacco, & Ward, 
1996; Slutsky & Recanzone, 2001; Vatakis, Navarra, Soto-Faraco, & Spence, 2008; 
Zampini, Shore, & Spence, 2003; Zampini, Guest, Shore, & Spence, 2005a). The 
systems’ tolerance to asynchronies, however, is malleable since it has been 
shown that the system can be recalibrated when adapted to specific asyn-
chronies (e.g.,  Fujisaki, Shimojo, Kashino, & Nishida, 2004; Navarra, Vatakis, 
 Zampini,  Soto-Faraco, Humphreys, & Spence, 2005; Vatakis, Navarra, Soto- 
Faraco, & Spence, 2007; Vroomen et al., 2004). Thus, a potential shift of the twi 
towards audition can be attained by manipulation of depth cues, sensory ex-
posure, or experience (e.g., music experts vs. non-musicians; King, 2005; Petri-
ni et al., 2009; Silva et al., 2014; Spence & Squire, 2003). Moreover, the twi can 
also be modulated by the temporal ventriloquism effect (i.e., the  phenomenon 

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



�35Temporal Order and Synchrony Judgments

<UN>

where the sound ventriloquizes vision into temporal alignment; Morein-Za-
mir, Soto-Faraco, & Kingstone, 2003; Spence & Squire, 2003).

Spatial proximity of the auditory and visual inputs is another parameter that 
affects integration of the incoming inputs (Lewald & Guski, 2003). For instance, 
two events that are close in space, time, and structure are usually perceived as 
emanating from the same underlying cause, while in the case of large spatial 
displacements the percept is associated with two different events originating 
from different sources (Kording et al., 2007). Thus, it is proposed that the brain 
uses causal inference to make estimations about optimal cue combinations 
(Kayser & Shams, 2015; Kording et al., 2007; Shams & Beierholm, 2010). In other 
words, the brain decides on whether the two stimuli originate from the same 
source and, subsequently, whether to integrate or segregate them (Bayesian 
causal inference; Kording et al., 2007). Thus, one could infer that the ecological 
validity of the stimuli presented could enhance the likelihood of multisensory 
integration and, thus, ones’ percept of synchrony (Aschersleben, 1999; but see 
van Eijk, 2008).

Kohlrausch et al. (2013) have also suggested that the potential differences 
noted in the perception of synchrony between various audiovisual stimuli (i.e., 
simple stimuli such as flashes and beeps, or ecologically valid stimuli such as 
a bouncing ball that have inherent anticipatory and predictive characteristics) 
may be attributed to the apparent causality of the event and not to the visual 
event predictability per se. More specifically, the claim is that an ecological val-
id multisensory stimulus is expected to promote the impression that the visual 
stimulus causes the auditory stimulus. Thus, this implied causal relationship 
leads to the expectation that the auditory stimulus cannot precede the visual 
one. Such expectations are not present in simple stimulation, thus leading to 
shifts in the judgment of synchrony between different types of  stimulation 
(i.e., less tolerance to auditory leading asynchronies for ecological valid stimu-
li; Kohlrausch et al., 2013).

Many other lower- and higher-level parameters have been reported to 
 affect both participants’ perception of synchrony and sensitivity to asynchro-
ny (see Vatakis, 2013, for a review). Stimulus characteristics such as intensity,   
duration, type, and content (Eg & Behne, 2015), as well as task characteristics, 
and  attentional and decisional mechanisms have been reported to modulate 
the twi and, thus, to affect participants’ multisensory synchronous percept 
( Garcia-Perez & Alcala-Quintana, 2012; Keetels & Vroomen, 2012; Schnei-
der & Bavelier, 2003; Shore, Spence, & Klein, 2001; Spence, Shore, & Klein, 
2001;  Sternberg & Knoll, 1973; Zampini et al., 2005b). Moreover, adapta-
tion to  specific stimulus asynchronies (Fujisaki et al., 2004; Vatakis, Navarra, 
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 Soto-Faraco, & Spence, 2007) and experience with time-dependent activities 
such as video games have been found to improve the perception of synchrony 
(Donohue, Woldorff, & Mitroff, 2010). Age, on the other hand, has been found 
to  deteriorate the perception of temporal order suggesting larger temporal 
windows of  integration, while perception of synchrony has been found to re-
main unaffected (Bedard & Barnett-Cowan, 2016). These parameters tap either 
on the physical or the neuronal level of arrival latencies affecting the range of 
the twi.

2 Tasks for the Measurement of Synchrony Perception

Research on the perception of synchrony has made use of various tasks for the 
measurement of perceptual latencies (differences in processing speed) between 
different sensory modalities, stimulus characteristics,  participant groups, cue 
types (e.g., prior-entry), or in temporal recalibration (Garcia- Perez & Alcala-
Quintana, 2015b). The two most widely used tasks are the: temporal order judg-
ment (toj) task and the binary simultaneity judgment (SJ-2) task. In the toj 
task, stimuli of different modalities are presented at various stimulus onset 
asynchronies (soas) and participants have to decide which stimulus was pre-
sented first or second (i.e., visual/auditory-first or visual/auditory-second re-
sponse). Similarly, in the SJ-2 task, participants are stimulated bimodally with 
various soas but their response now is on whether the two sensory inputs were 
simultaneously presented or not (i.e., synchronous or asynchronous response).

Another commonly used task for measuring the perception of synchrony is 
the ternary simultaneity judgment task (SJ-3; Kohlrausch, et al., 2013; Kuling, 
van Eijk, Juola, & Kohlrausch, 2012; Ulrich, 1987; van Eijk, Kohlrausch, Juola, & 
van de Par, 2008). This task is a combination of the two previously described 
tasks (i.e., toj and SJ-2). That is, the participants are presented with synchro-
nous and asynchronous bimodal stimulation and they have to decide whether 
the stimuli were presented in synchrony or not and in case of an asynchronous 
 response to report which sensory input was presented first. Thus, the three pos-
sible answers to this task are: synchronous/asynchronous,  auditory-leading, or 
visual-leading stimulation.

Other tasks have also been implemented for the perception of synchrony 
but not commonly used such as reaction time tasks (Cardoso-Leite, Gorea, & 
 Mamassian, 2007; Diedrich & Colonius, 2015; Leone & McCourt, 2015), 
 perceptual fusion tasks (where participants decide whether they perceived 
a unified event or not; Stevenson & Wallace, 2013), and two-interval forced 
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choice tasks (where participants decide which of two bimodal events was syn-
chronous; Stevenson & Wallace, 2013; Yarrow et al., 2016; see Chapter 13, this 
volume; or which bimodal event had a shorter or longer duration; Linares & 
Holcombe, 2014). Measurements of perceptual latencies are not restricted to 
audiovisual stimulation but extend to other modality combinations such as 
audiotactile and visuotactile stimulations (e.g., Noel, Wallace, Orchard-Mills, 
Alais, & Van der Burg, 2015). In the present chapter, however, we are going to 
focus on audiovisual events and the three most commonly used tasks: toj, 
SJ-2, and SJ-3.

3 The Parameters Associated with Synchrony Perception

The raw data obtained from the toj, SJ-2, and SJ-3 tasks are most commonly 
processed so as to obtain the: point of subjective simultaneity (pss; note that pss 
differs from the point of objective simultaneity due to the latencies described 
in the introduction section), just noticeable difference ( jnd; standard deviation 
of the distribution, sd, in sj tasks), and twi (see Table 11.1). Although these 
derived parameters are interpreted in the same way across tasks, it is as yet un-
clear whether the different tasks actually measure the same exact perceptual 
processes. The discrepancies noted in these sensitivity parameters when these 
tasks are compared have raised concerns on whether these measures reflect 
differences in participants’ sensitivity to the event synchrony/asynchrony or 
reported biases and experimental manipulations (e.g., Garcia-Perez & Alcala-
Quintana 2012; 2015a,b; Nicholls, Lew, Loetscher, & Yates, 2011; Spence & Parise, 
2010; van Eijk et al., 2008; Vatakis et al., 2008; Vroomen & Keetels, 2010; Yates & 
Nicholls, 2011). We will explore these discrepancies later in this chapter, but 
let’s first explain what the parameters of these measures represent for each 
task and how they are calculated.

3.1 toj Measures of Sensitivity
In the TOJ task, the pss is an indirect measure of the perceived simultaneity 
of the stimuli presented (Garcia-Perez & Alcala-Quintana, 2015a). It represents 
the amount of asynchrony that must be present between bimodal inputs at 
which participants cannot reliably detect their temporal order (i.e., indirect 
perception of synchrony; see Table 11.1). Thus, participant responses for tem-
poral order at the pss point are near chance level (for which  modality was pre-
sented first or second) assuming no inherent response biases. To compute the 
pss in a toj task, the percentage of the visual-first (or auditory-first)  responses 
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for each stimulus condition is plotted as a function of the soa (i.e.,  the 
 percentage/ proportion of trials across conditions that the participants re-
ported ‘visual first’ percepts). The data are fitted to an S-shaped psychometric 
function and the 50% crossover point on this curve is the pss (i.e., the soa 
at which it is assumed that the participants perceive inputs as simultaneous; 
see Coren et al., 2004, for further details; see Figure 11.1). In general, positive 
pss values  indicate a visual leading requirement in stimulus presentation for 
synchrony to be perceived, while negative pss values indicate a visual lagging 
requirement.

The jnd represents the smallest interval at which the participants can reli-
ably decide which sensory input of the two presented was first (see Table 11.1). 
The steepness of the curve at the 50% point reflects participants’ sensitivity to 
temporal asynchronies. This measure can also be expressed as the jnd value 
and computed as half the difference between the 25% and the 75% point on 
the same curve (see Figure 11.1). Typically, a steep slope results in small jnds 
and, thus, in high participant sensitivity in the detection of asynchronies in the 
stimuli presented (i.e., high temporal resolution).

Finally, the twi represents the range of tolerance in audiovisual asynchro-
nies within which the perceptual system integrates the sensory inputs and, 
thus, reliable detection of order is not possible. The range of the twi is com-
puted as the [pss ± jnd]. The left twi (i.e., pss-jnd) represents participants’ 
insensitivity to detect order when the auditory stimulation is leading, while 
the right twi (i.e., pss + jnd) represents participants’ insensitivity to a leading 
visual stimulation.

Table ��.� An overview of the sensitivity measures obtained from the toj and sj tasks.

Task
Measures

toj [Auditory or Visual first?]
sj [Synchronous or 
Asynchronous?]

pss Indirect measure Direct measure
of perceived synchrony

jnd The smallest interval needed for reliable perception of
temporal order asynchrony

twi The range of tolerance for perception
of synchrony (i.e., inability to 
detect temporal order)

of synchrony
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3.2 SJ Measures of Sensitivity
In the SJ-2 task, the pss represents the interval at which the participants per-
ceive the incoming inputs as simultaneous, the jnd represents the smallest 
interval at which the participants can reliably detect the asynchrony in the 
 audiovisual event presented, and the twi represents the range of tolerance 
within which participants perceive synchrony (see Table 11.1). To compute 
these measures, the percentage/proportion of the ‘synchronous’ responses 
(i.e., trials across conditions in which the participants reported that the stimuli 
presented were in synchrony) is plotted as a function of the soa and a bell-
shaped Gaussian psychometric curve is obtained (see Figure 11.1). The peak 
of this curve corresponds to the pss value and the jnd can be computed as  
the mean soa for the 75% point of the same curve (see Stone et al., 2001; 
Myung, 2003, for a detailed explanation). The range of the twi is computed 
as in the toj task. Typically, the left and right twis derived for an sj task are 
not  symmetrical. The right twi tends to be longer (i.e., participants report 
 simultaneous responses for larger intervals when the visual stimulus is leading) 
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Figure ��.� Percentage of hypothetical ‘synchronous’ responses from an sj task as a function 
of the soa (blue bell-shaped curve) and hypothetical ‘visual first’ responses from 
a toj task plotted as a function of the soa (magenta sigmoid curve). Negative 
soas indicate an auditory lead in the audiovisual pair presented and positive soas 
indicate a visual lead. The pss values in this example are positive (i.e., visual leads 
are required) for both tasks.

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



Kostaki and Vatakis�40

<UN>

due to the expected visual bias or the bias to perceive events as  synchronous 
(Vatakis et al., 2008). The measures of sensitivity obtained from the SJ-3 task 
are a combination of the analysis described in the SJ-2 and toj data.

4 Differences in the Measures Obtained from toj and sj Tasks

A number of studies have used toj and sj tasks to investigate how the per-
ception of synchrony is affected by a number of parameters such as the: type 
of stimulation (e.g., speech or non-speech stimuli, vestibular, auditory, visual, 
or tactile stimulation; Barnett-Cowan & Harris, 2009, 2011; Eg & Behne, 2015; 
 Fujisaki & Nishida, 2009; Li & Cai, 2014; Maier, Di Luca, & Noppeney, 2011; 
Sanders et al., 2011; Vatakis et al., 2008; Vroomen & Stekelenburg, 2010), par-
ticipant group tested (e.g., patients with schizophrenia, video gamers, older 
adults;  Bedard & Barnett-Cowan, 2016; Capa, Duval, Blaison, & Giersch, 2014; 
 Donohue et al., 2010), attentional manipulations used (Schneider & Bave-
lier, 2003),  potential confounds and biases (see Keetels & Vroomen, 2012, for 
a  review), adaptation and recalibration effects (e.g., Fujisaki et al., 2004; 
Vroomen  et al., 2004), and perceptual training (Cecere, Gross, & Thut, 2016; 
Stevenson et al., 2013). These studies revealed marked differences between the 
parameters  obtained from the two tasks. For instance, the mean pss values 
across toj studies were mainly shifted towards audition (i.e., auditory-leading), 
whereas in sj studies the mean pss values were generally visually shifted (i.e., 
visual-leading; see van Eijk et al., 2008, for an extended literature review; but 
also see Leone & McCourt, 2015; Linares & Holcombe, 2014). A central ques-
tion in the study of synchrony perception is, therefore, whether or not the toj 
and sj tasks utilized refer to the same or different perceptual processes (e.g., 
Binder, 2015; Garcia-Perez & Alcala-Quintana, 2015a; Keetels & Vroomen, 2010; 
Love et al., 2013; Spence & Parise, 2010; van Eijk et al., 2008; Vatakis et al., 2008).

The debate about whether the two tasks tap into common underlying pro-
cesses stems back in the ’70s. On the basis of the independent-channels mod-
els described by Sternberg and Knoll (1973), it has been argued that a central 
timing mechanism receives the signals from the two stimuli presented, which 
arrive with randomly distributed arrival latencies, and applies a ternary de-
cision rule to the arrival-time difference between the two signals in order to 
determine order or synchrony judgments. Thus, it was assumed that the two 
tasks were based on the same internal events (perceptual latency model; see 
Allan, 1975) and, thus, the perception of successiveness/asynchrony was a nec-
essary and sufficient condition for the perception of temporal order. According 
to Hirsh (1959), however, the perception of asynchrony is a necessary but not 
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 sufficient condition for the perception of order (two stage models; Jaskowski, 
1991; Poppel, 1988). For instance, in a toj task, apart from the detection of syn-
chrony/asynchrony (first stage), the participant must also identify the order 
of the presented stimuli (second stage). Thus, the toj task involves more pro-
cesses than those required for the sj task. To-date, however, no agreement has 
been reached on whether these differences are due to perceptual or decisional 
processes or both. A growing number of studies are currently investigating this 
issue, both in perceptual and neuronal level, adopting identical experimental 
set-ups and participant groups for both the toj and sj tasks (e.g., Binder, 2016; 
Garcia-Perez & Alcala-Quintana, 2012; 2015; Linares & Holcombe, 2014; Love, 
Petrini, Cheng, & Pollick, 2013; Machulla, Di Luca, & Ernst, 2016; Matthiews 
et al., 2016; Stevenson & Wallace, 2013; van Eijk et al., 2008; Vatakis et al., 2008).

4.1 Divergent Perceptual Processes
Some researchers have proposed a potential dissociation between the mecha-
nisms involved during the execution of the toj and sj tasks. Zampini et al. 
(2003), for instance, have argued that the toj task may reflect processes re-
lated to temporal discrimination, while sj tasks may be related more to tem-
poral binding mechanisms. Vatakis et al. (2008) also argued that the two tasks 
might not measure the same aspects of temporal perception. In their study, 
they measured the participants’ sensitivity in the sj and toj tasks using tem-
poral recalibration in a simple pair of audiovisual stimuli with an audiovisual 
speech stimulus as the adaptor. The results showed positive pss values for both 
tasks but these values were not correlated across tasks on an individual basis. 
If the pss values across tasks were correlated then one could support that they 
measure the same underlying processes. Yet this was not the case. Similarly, no 
correlation was found for the jnd values obtained from the two tasks. Vatakis 
and colleagues attributed the differences in the pss values to the nature of the 
sj task that could potentially bias participants’ responses toward a simultane-
ous rather an asynchronous response, given that matched events tend to also 
be matched in time, and, thus, should be in synchrony.

Moreover, van Eijk et al. (2008) argued for the adoption of different termi-
nology as a function of task so as to avoid potential interpretations of obtained 
data as representing the same underlying perceptual processes. Specifically, 
Van Eijk and colleagues tested the effect of experimental method used and 
stimulus type presented on the audiovisual temporal percept across the same 
participants (not in a temporal adaptation, Vatakis et al., 2008; or prior entry 
paradigm, Yates et al., 2011). They used simple (i.e., light flashes and sound 
clicks) and complex stimuli (i.e., bouncing balls and impact sounds) at various 
soas and asked participants to provide a toj, an SJ-2, and an SJ-3 response. 
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They measured the pss, the slope of the corresponding curves, and the twi for 
the sj tasks. Their results showed visual leading (positive) pss values for both 
the sj and toj task (with large inter-participant deviations). pss differences 
from the toj and sj task were only obtained for the complex stimuli present-
ed, while no differences were found for the simple stimuli used. Moreover, no 
pss correlations between the toj and SJ-2 or SJ-3 tasks were obtained for both 
types of stimuli, while highly correlated pss values were obtained between the 
SJ-2 and SJ-3 tasks. Additionally, for the bouncing ball stimulus, the slope val-
ues and the width of synchrony range between toj and SJ-2 (but not SJ-3) tasks 
were significantly correlated, while for the simple stimulus pair no correlations 
between toj and SJ-2 or SJ-3 were obtained. Thus, van Eijk and colleagues pro-
posed that the pss values are dependent on the experimental method utilized 
and possibly related to different underlying perceptions. They also argued that 
the inconsistent pss values observed in the toj task could be accounted for by 
differences in participants’ response strategy, making the toj task a less reli-
able task for synchrony perception.

Similarly, Love et al. (2013) suggested that the sj and toj tasks do not rep-
resent the same underlying processes of the perception of synchrony. Their 
study extended the results of van Eijk et al. (2008) by using five different stimu-
lus types at different levels of complexity (i.e., beep-flash, beep-flash-constant-
visual, beep-flash-drumming, point-light-drumming, and face-voice stimuli). 
The aim of their study was to investigate whether the previously observed pss 
differences (van Eijk et al., 2008) were consistent across different stimulus 
types. To eliminate any potential confounds due to stimulus duration,1 they 
mostly created stimuli with equal overall duration. They measured the pss 
and the twi. The pss obtained from the toj task was auditory shifted (i.e., 
auditory-leading), while, for the sj task, the pss values were visual shifted (i.e., 
visual-leading). Regarding the twis, narrower windows were obtained for the 
toj task using simple stimuli as compared to the sj task, while for complex 
speech stimuli, the twi was longer for the toj task as compared to the sj task. 
For the rest of the complex stimuli, no significant differences were obtained in 
the twi across tasks. Similar to van Eijk et al., Love et al. found no correlation 
for the pss or twi between the two tasks. Participants were more accurate 
to detect asynchrony in the sj task when the auditory modality was leading 
as compared to visual leads for all stimulus types except for the speech pairs. 

1 The increasing soas between two signals increases linearly the stimulus duration potentially 
providing extra cues when judging asynchrony, while this is not valuable when judging stim-
ulus order. Although, it would be best to ensure equal stimulus duration for both the toj and 
sj tasks.
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 Additionally, regarding the potential effect of stimulus duration, they found no 
evidence of sj differences (see also Stevenson & Wallace, 2013), while perfor-
mance in the toj task was very poor resulting in the exclusion of over 65% of 
the participants. In general, Love et al.’s results are in line with van Eijk et al.’s 
findings, thus supporting that a single task is not sufficient to explore the many 
different factors underlying the percept of synchrony.

As can be seen from the above-mentioned studies, differences in the pss 
values across stimulus types and across studies are not consistent. This may 
be due to the different stimulation used, the experimental set-ups, or analyses 
implemented. Together, however, these differences argue for the potential that 
the two tasks used for the measure of synchrony might not tap into the same 
underlying processes.

4.2 Partially Overlapping Mechanisms and Potential Sources of Bias
Fewer studies have also argued for the potential that the sj and toj tasks share 
at least in part some common mechanisms of temporal perception. Maier 
et al. (2011), for example, supported this for the perception of synchrony for 
audiovisual speech stimuli. In their study, they utilized speech and non-speech 
stimuli and fitted their data using both parametric (Gaussian and cumulative 
Gaussian psychometric functions) and non-parametric methods. Their results 
showed that the twi for the toj task was wider than that obtained from the 
sj task for the speech but not for the non-speech stimuli. This finding was at-
tributed to an attentional shift of the participants’ focus to the onsets of the au-
diovisual signal during the toj task, making participants ignore the temporal 
information of the rest of the stimuli, whereas the sj task required judgments 
based on the combined auditory and visual signals. The pss and jnd param-
eters obtained in the toj and sj task were found to be significantly correlated 
(in the non-parametric fitting). Thus, although one could argue for some com-
mon processing, one could also claim that the analysis method can potentially 
affect the results and their interpretation.

Linares and Holcombe’s (2014) toj and sj comparison focused on the role 
of biases as a potential explanation for the differences noted between the two 
tasks (Garcia-Perez & Alcala-Quintana, 2012; Schneider & Bavelier, 2003; Shore, 
Spence, & Klein, 2001; Yarrow, Jahn, Durant, & Arnold, 2011; Vatakis et al., 2008). 
Using simple stimuli they found positive (i.e., visual leading) pss values both 
for the toj and sj tasks (at individual level, larger deviations were obtained 
in the toj task with both positive and negative pss values). Moreover, no pss 
correlations were found between the two tasks. Thus, Linares and Holcombe 
attributed the different perceptual latencies (i.e., psss) across tasks at par-
tially distinct sets of biases. For instance, the pss obtained from the toj task 
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could have been affected by potential prior entry effects (where differential 
 attentional allocation can result in perceptual latency differences), response 
biases over one response as compared to another (particularly for soas near 
the pss), and task difficulty biases (i.e., difficulty to order stimuli in time). Con-
versely, the pss obtained in an sj task could have been affected by potential 
prior entry effects but also due to the asymmetric criterion bias (due to per-
ceptual latencies).

Stevenson and Wallace (2013) also argued that it is possible for the two tasks 
to share some common underlying processes for the “ascription of temporal 
identity at a stimulus level”. Specifically, they investigated the effect of task and 
stimulus type on the twi at different statistical criterion levels to check wheth-
er and how the criterion level may affect twi outcomes. They used simple and 
complex (speech and non speech) stimuli and asked participants to perform 
an sj and a toj task. Their results showed that the twi was dependent both 
on the task and stimulus type. The sj task yielded wider twis as compared to 
the toj task showing that additional processing steps were required after the 
low-level analysis of the temporal relationship of the stimulus pair. Similarly, 
the speech stimuli yielded wider twis as compared to non-speech stimuli (for 
criterion level at 50%). Moreover, the right side of the twi (both at 50 and 
70% criterion levels) was longer for the sj than the toj task, while for speech 
stimuli it was symmetrical as compared to the asymmetrical twi for non-
speech stimuli with criterion levels impacting this symmetry. Contrary to what 
 Linares and Holcombe reported for individual performance levels, Stevenson 
and Wallace found strong within participant twi correlations across tasks. On 
the basis of this finding, they proposed that while task and stimulus types may 
affect differentially the pss and twi values, the tasks strongly correlate in their 
elicitation of the twi.

Similarly, Garcia-Perez and Alcala-Quintana (2015) argued that differences 
in performance across the sj and toj tasks could be due to task-dependent de-
cisional and response processes that operate on the “timing processes that are 
identical under both tasks”. In previous studies, the reported performance was 
based on a curve fitting relative to the task at hand and systematic discrepan-
cies between toj and sj tasks were obtained. According to Garcia-Perez and 
 Alcala-Quintana (2012; 2015b), however, this kind of analysis could not distin-
guish whether the differences obtained across stimuli, tasks, or  experimental 
manipulations were due to timing, decisional, or  response processes. To ad-
dress this problem, Garcia-Perez and Alcala- Quintana (2012) developed a 
computational model of timing  judgments to address the individual contri-
bution of each component (i.e., timing, decisional, and response  processes). 
Their model was based on independent-channels models and, thus, on the 
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principle that sensory inputs from different modalities are processed in-
dependently from the different sensory pathways to create a perceived on-
set time (Garcia-Perez & Alcala-Quintana, 2015a). Then, a decision rule is  
applied on the perceived onset of the sensory inputs and a timing judgment 
is made (e.g., auditory first, visual first, or simultaneous response). Finally, this 
judgment elicits the response processes and the participant provides his/her  
response according to the task at hand. The model’s sensory parameters 
 affecting observed performance were isolated and kept invariant across tasks, 
whereas decisional parameters could vary across tasks, thus showing the 
 potential  differences between the tasks used to measure the perception of syn-
chrony (Garcia-Perez & Alcala-Quintana, 2012; for more details see Chapter 12, 
this volume).

The Garcia-Perez and Alcala-Quintana model has been extended to explain 
previously reported differences of the toj and sj tasks (Garcia-Perez & Alcala-
Quintana, 2015a,b). For instance, Garcia-Perez and Alcala-Quintana (2015b) 
 attributed the pss values obtained in the toj and sj tasks utilized in Matthews 
and Welch’s (2015) study to a left visual field advantage and different  resolution 
at the decision mechanism (that is, different perceived onset asynchronies 
were required to perceive asynchrony between the hemifields), but not to 
 differential low-level temporal characteristics (i.e., visual acuity). In general, for 
stimuli and conditions similar across tasks, the differences obtained in tempo-
ral judgments were due to decisional and response processes between the two 
tasks rather than different timing processes (Garcia-Perez &  Alcala-Quintana, 
2015a). Thus, this is among the first approaches to investigate how sjs and tojs 
differ in the decisional space (Garcia-Perez &  Alcala-Quintana, 2012, 2015a; 
Matsuzaki et al., 2014; Regener, Love, Petrini, & Pollick, 2015).

Similarly, Matthews et al. (2016) supported that the differences between the 
toj and sj tasks stem from decisional and response related factors. Specifical-
ly, in their study they showed that decisional factors govern both the relative 
speed (i.e., reaction time) and accuracy of the relative timing judgments. Using 
a sj and a toj task within a visual rsvp task, Matthews and colleagues found 
that reaction times increased with uncertainty near the task-specific  decision 
boundaries. Thus, for sj they found faster reaction times to synchronous as 
compared to asynchronous inputs, while the opposite pattern was obtained 
for toj. Overall, they found smaller reaction time (rt) patterns (rt to syn-
chronized stimuli/RT to ± threshold asynchrony) for the sj than for the toj 
task (although not consistent across participants) suggesting that decisional 
and not stimulus driven differences affected the rts obtained in the two tasks. 
Further testing of this rt pattern to other types of stimuli (not only visual) still 
remains to be done, as well as testing its reliability for timing judgments.
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Machulla et al. (2016) also supported that toj and sj tasks share, at least 
partly, common processes and, thus, they are not independent. They tested 
pss and jnd values across the sj and toj tasks using simple audiovisual, au-
diotactile, and visuotactile stimulation and they found that the psss obtained 
between the two tasks were correlated. Moreover, the pss values from the toj 
task were negative across the different pairs of stimuli (i.e., audiovisual, au-
diotactile, and visuotactile), while the pss values from the sj task were posi-
tive only for the visuotactile pair. It is important to note that the fitting data 
procedure was based on a non-parametric method (to allow for asymmetries 
around the pss).

Finally, an interesting proposal was recently put forward by Parise and Ernst 
(2016), who argued that a general mechanism could potentially explain per-
ceptual processes such as those governing causality, synchrony, and order. 
Specifically, they developed a model by borrowing the structure of a neural 
mechanism that detects motion and motion direction in the visual system 
(known as the Hassenstein-Reichardt detector or elementary motion detector) 
and modified it so as to explain aspects of multisensory perception. In brief, 
this mechanism contains detectors/subunits (termed as multisensory correla-
tion detectors) that receive sensory information from different senses of spa-
tially aligned receptive fields. The detectors’ inputs are subjected to low-pass 
temporal filtering (i.e., temporal shifts are applied) and the outputs are either 
multiplied or subtracted to detect causality (correlation) and temporal order, 
respectively. Through this structure, one can explain the spatiotemporal char-
acteristics of multisensory integration in a single general mechanism account-
ing for both neuronal and behavioral level outcomes (Parise & Ernst, 2016).

Recently, therefore, more and more researchers are supporting that the 
toj and sj tasks may not be independent but instead they may share com-
mon mechanisms in the low level of the timing judgment or even one general 
mechanism. See Table 11.2 for an overview of the studies mentioned above. To 
further contribute to this discussion, the next section briefly covers what hap-
pens at the neuronal level when utilizing these two tasks.

4.3 The Underlying Neuronal Processes of the sj and toj Tasks
It is important now to examine what happens in the brain when someone  
performs a synchrony/temporal judgment task. From a neuronal level perspec-
tive, Binder (2015) explored within participant differences in neural activation 
between toj and sj tasks for a simple audiovisual stimulation using event-
related fMRI. One of the main findings of this study was that the active areas 
elicited by both tasks overlapped with regions usually associated with spatial 
selective attention. Thus, timing judgments of audiovisual sensory  inputs acti-
vate regions that are used during tasks based on spatial information.  Another 
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interesting finding of this study, is that the toj task activated additional re-
gions in the left-hemisphere sites (in the prefrontal, parietal, and temporo-
occipital regions) as compared to the sj task. This additional activity made 
Binder to suggest that the toj task needs further processing potentially due 
to the  formation of stimuli representations as “separate and temporally or-
dered sensory events.” This suggestion is consistent with the assumptions of 
the two-stage models (Jaskowski, 1991; Poppel, 1988), where an additional level 
is required to form the internal representation of order and reach a decision 
(Binder, 2016).

Using more complex stimuli and a mixed block/event-related fMRI design, 
Love et al. (submitted), supported that the sj and toj task have “divergent neu-
ral mechanisms” despite the common brain activity elicited for both tasks. In 
line with Binder’s (2015) results, Love et al. found that during the toj task, but 
not the sj, several regions in the left hemifield were activated (middle occipi-
tal, middle frontal, precuneus, and superior medial frontal cortex), while the 
left middle occipital cortex (moc) areas were deactivated. These findings sug-
gest differential neural mechanisms for the two temporal tasks challenging the 
notion that the two tasks are based on the same cognitive architecture using 
the same sensory information (i.e., perceptual latency between the sensory in-
puts; Love et al., submitted).

Miyazaki et al. (2016) also supported that from the neuronal perspective, the 
two tasks are based on different mechanisms. In their study, they utilized uni-
modal tactile stimuli to test the neural activity between the toj and sj tasks 
and they found specific brain activation patterns for each of the two tasks. 
More specifically, during the toj task more areas were activated as compared 
to those during the sj task (i.e., left ventral and bilateral dorsal premotor cor-
tices and left posterior parietal cortex for the toj task and posterior insular 
cortex for the sj task) providing support for the hypothesis that not only the 
two tasks engage their own specific processes but also that the toj task in-
volves more processes than sj and that sj processes are included in those for 
toj (Miyazaki et al., 2016).

To sum up, despite the growing number of studies on the comparison of the 
two main tasks for synchrony perception, the results and, thus, the conclusions 
are still inconsistent across studies. The different types of stimuli used along 
with the different soas, the number of participants, the various techniques 
followed to fit the data, and the different parameters derived from each study 
(pss, jnd, or twi), do not allow for a direct comparison of the existing sj and 
toj studies. Moreover, research on the mechanisms of the perception of syn-
chrony and order have not as yet expressed a clear position in relation to the 
initially proposed hypotheses of perceptual latency and two-stage models (but 
see Binder, 2016; Garcia-Perez & Alcala-Quintana, 2012).
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5 Which Task Should One Use to Measure Synchrony Perception?

The sj and toj tasks have been treated as equivalent and used interchange-
ably when studying synchrony (Keetels & Vroomen, 2012). In view of the re-
cent findings, however, the question of which task to use in ones’ study arises. 
In many studies, it has been argued that the toj data are more variable in 
terms of pss as compared to the sj data (van Eijk et al., 2008), which could 
be due to the inherent response biases (Garcia-Perez & Alcala-Quintana, 2012; 
Schneider & Bavelier, 2003; Vatakis et al., 2008) that cannot be distinguished 
from perceptual effects (Garcia-Perez & Alcala-Quintana, 2013). Garcia-Perez 
and Alcala-Quintana’s (2012) findings support that the response bias is larger 
in toj experiments (resulting in shallower psychometric function at the 50% 
point; Garcia-Perez & Alcala-Quintana, 2013) because participants are re-
quired to guess which stimulus was presented first even when they perceived 
multiple stimulations as a single event. In this respect, performance measures 
are contaminated and possibly cannot be directly compared to those obtained 
from sj tasks (Garcia-Perez & Alcala-Quintana, 2012). Yarrow et al. (2011) ques-
tioned the suitability of sj tasks supporting that they are not appropriate for 
 understanding the underlying mechanisms of “apparent timing distortions”. As 
they support, it is not clear for the sj task whether the pss reflects differences 
in perceptual latencies and/or shifts in the criterion used to decide between 
synchronous and asynchronous sensory inputs.

Vatakis et al. (2008) have also expressed concerns about inherent response 
bias in the sj task given that participants may be biased toward binding the 
incoming sensory inputs and treating them as a unified percept. This bias ac-
cording to Vatakis et al. cannot affect the performance in the toj task where 
participants need to judge the order of presentation of the stimulus pair. These 
arguments are based on their findings of worst jnd values in the sj as com-
pared to the toj task. Similar jnd effects were also obtained by Barnett-Cowan 
and Harris (2009), who tested the temporal sensitivity to vestibular stimula-
tion in relation to auditory, visual, and tactile stimulation.

Moreover, the comparison between the measures obtained from the SJ-2 
and SJ-3 tasks revealed that although the auditory leading boundary in both sj 
tasks was shorter than the visual, the pss values and visual-first boundary for 
the SJ-2 task were larger as compared to those obtained from the SJ-3 task (van 
Eijk et al., 2008). These results led van Eijk et al. to suggest that for the percep-
tion of synchrony the SJ-3 task is potentially a better choice. The suitability of 
the ternary sj task (i.e., SJ-3) for temporal sensitivity measures has also been 
proposed by other researchers (e.g., Garcia-Perez & Alcala-Quintana, 2013; 
Schneider & Bavelier, 2003; Spence & Parise, 2010; Ulrich, 1987; Zampini, Shore, 
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& Spence, 2008) that suggested that the toj task should be avoided in research 
focusing on pss values and SJ-3 tasks should be preferred instead.

Garcia-Perez and Alcala-Quintana (2015b) are also in line with this sugges-
tion by taking it a step further to the decision space. Given that participants 
in an SJ-3 task may perceive asynchrony but are unable to identify stimulus 
order, Garcia-Perez and Alcala-Quintana proposed a potential extra division of 
the existing decisional space (synchronous, auditory first, visual first) in order 
to cater for this forth type of judgment (asynchronous but cannot report the 
order). The authors suggest that such a division could potentially also explain 
why the twi in a toj task is wider than that for an sj task, however, these argu-
ments need to be further investigated.

A task recommendation that is well accepted by the whole community is 
yet to be defined. This is mainly due to the unresolved issues of what are the 
underlying mechanisms governing each task and what the actual data ob-
tained from each task really means in terms of the perception of synchrony. 
Thus, more research is needed comparing the three tasks and for the time be-
ing one’s choice of a task should be dependent on the specific question asked 
in a given study.

6 Individual Differences

Generally, mean pss values are mainly positive for sj tasks and negative for toj 
tasks. On an individual level though, both auditory- and visual-leading psss 
have been reported for both tasks (Linares & Holcombe, 2014; Stone et al., 2001; 
van Eijk et al., 2008). For instance, while some participants perceive simultane-
ity when the visual stimulus is leading, some others perceive simultaneity when 
the sound stimulus is leading. As Stone et al. supported pss values are signifi-
cantly different between most individuals as well as in each individual and the 
estimated population mean pss value. These consistent individual differences 
should not be disregarded but instead, should get more attention so as to better 
understand the underlying causes of such differences (Spence & Squire, 2003).

Moreover, there is a controversy on whether the measures of sensitivity on 
an individual level correlate or not across tasks. For instance, many  researchers 
(Fujisaki & Nishida, 2009; Linares & Holcombe, 2014; Love et al., 2013; van Eijk 
et al., 2008; Vatakis et al., 2008; Vroomen & Stekelenburg, 2010) reported that 
within participants the twi or pss values were not correlated across tasks. On 
the other hand, Stevenson and Wallace (2013) found strong twi correlations on 
an individual level. Linares and Holcombe (2014) suggested that to evaluate the 
obtained differences in the estimation of the pss between the two tasks, one 
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should consider both the consistency of pss across tasks and the consistency 
of the same values across different moments in time in an individual level (see 
also Odegaard & Shams, 2016). Stone et al. (2001) who tested pss values in an 
individual level using a sj task with a pair of simple stimuli at various soas, 
found that individual pss values varied between negative and positive values 
(i.e., −21 to +150 ms). Moreover, testing the pss values from a sj task across 
different stimulus distances, Stone et al. found highly correlated pss values 
showing that pss values within observers are rather stable and  independent 
of stimulus distance. More recent findings on highly positive correlated pss 
 values across sj and toj tasks, suggest a consistency in sensitivity on an indi-
vidual level with participants with large jnds in a sj task having also large jnds 
in a toj task (Machulla et al., 2016). Thus, it is as yet not clear how binding and 
the perception of synchrony are modulated across tasks and stimulus proper-
ties in an individual level but there is growing evidence that interindividual 
differences may be systematic (Eg & Behne, 2015; Linares & Holcombe, 2014; 
Stone et al., 2001; van Eijk et al., 2008).

7 Criteria for Excluding Participants

When collecting data for the study of the perception of synchrony you may 
sometimes need to exclude some data, thus in this section we will take a brief 
look at the criteria used for removing inappropriate data. Excluding partici-
pant’ data in a toj task is more widespread that in a sj task for similar stimu-
lation and experimental settings (e.g., Love et al., 2013; Matthews et al., 2016). 
This may imply that the toj task is a more difficult task to perform than the sj. 
Different criteria are used across studies as it relates to potential data exclusion. 
One of these criteria is whether the participant’s data are fitted to the curves 
used (Love et al., 2013). The criterion for the goodness of fit between data and 
fitted function is usually the r2 value. Values below 0.5 are taken as indices for 
exclusion while values above this level lead to the maintenance of the data for 
further analysis. There are also occasions where the participants’ performance 
in the task (inability to perform above chance levels; Matthews et al., 2016; 
van Eijk et al., 2008) and/or pss values exceed the tested asynchronies range 
and, thus, are excluded from further analyses (Matthews et al., 2016; Vatakis & 
 Spence, 2008; Zampini et al., 2003). In other studies, each participant’s pss  
values are compared to the group pss values with those falling two standard 
deviations away from the mean being excluded (Vatakis et al., 2008).

Love et al. (2013) had large exclusion rates in the toj task of their study (over 
63% for complex stimuli with manipulations of duration) and this  suggests 
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that exclusion rates should not be disregarded in literature. They may indicate 
either a potential outcome measure or that the functions used to fit the toj 
data are inappropriate (Love et al., 2013). In any case, it is important to keep 
in mind that participants’ data exclusion needs to be done carefully following 
specific criteria that will allow for further comparisons and/or replications.

8 Differences in Fitting Data Procedures

The most recent research in synchrony perception mostly fits Gaussian and 
cumulative Gaussian psychometric functions to sj and toj data. Even the fit-
ting procedures, however, are not consistent across studies and this may cause 
difficulties in comparing results across studies. The curve used to fit the data 
can affect the estimation of the pss either precluding its estimation or bias-
ing the pss “away from the mean of the distribution and towards the median” 
( Linares & Holcombe, 2014; Maier et al., 2011). Nevertheless, the obtained psy-
chometric function is usually modeled either by a cumulative Gaussian (Leone 
&  McCourt, 2015; Linares & Holcombe, 2014; Love et al., 2013; Stevenson & Wal-
lace, 2013; van Eijk et al., 2008) or a logistic function posing yet another issues 
in the comparison of the reported data across studies. Similarly, to analyze data 
obtained from a sj task, a bell-shaped psychometric function is used to fit the 
“synchronous” response curve (see Stone et al., 2001). Generally though, this 
fitting procedure is conducted on an individual basis and mean values across 
participants are computed for each parameter. Despite the function used to fit 
the data, the parameters obtained from this task are derived using the formu-
las described earlier in this chapter. Thus, it is clear that even within a study, 
where the stimuli and asynchronies across tasks are the same, the parameters 
involved in the different fitted functions in the toj and sj tasks can lead to dif-
ferences in a study’s outcomes (Garcia-Perez & Alcala-Quintana, 2012).

A shortcoming of the Gaussian functions trying to fit the data curve is its 
symmetry while the data that we want to fit are asymmetric (i.e., participants 
report “synchronous” for larger visual leading asynchronies; Alcala- Quintana & 
Garcia-Perez, 2013). To capture asymmetries in data from sj tasks, some studies 
have used two cumulative Gaussians functions to fit the synchrony response 
curve allowing for different slopes in the two halves (e.g., Hillock, Powers, 
& Wallace, 2011; Stevenson & Wallace, 2013; van Eijk et al., 2008). Thus, one 
 function was fitted to the synchronous responses when sound was leading (left 
twi) and the other to the synchronous responses when sound was lagging 
(right twi). The maximum synchronous response proportion was calculated 
for both halves and the intersection of the two curves may be used to estimate 
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each participant’s pss (Stevenson & Wallace, 2013). Although, researchers also 
calculate the goodness of fit between obtained and predicted data using either 
anova comparing predicted data points and actual measured data points cor-
responding to the soas presented (Stevenson & Wallace, 2013) or the R2 pa-
rameter (Love et al., 2013; Vatakis et al., 2008), the symmetry problem remains.

Researchers have also used non-parametric functions to fit their data (both 
sj and toj; see Machulla et al., 2016; Maier et al., 2011) allowing asymmetries 
between the two halves. Comparing the parametric and non-parametric fit-
ting, Maier et al. have found differences in the correlations obtained between 
the parameters of the two tasks (i.e., parametric functions did not reveal sig-
nificant correlations, while non-parametric functions revealed some signifi-
cant correlations) showing that the data analysis method affects the obtained 
results. Signal detection procedures have also been used to describe each 
 participant’s temporal precision (d’) across soas (Matthews et al., 2016) and, 
subsequently, these values are fitted to the selected functions as would have 
happened with proportions of “visual first” or “synchronous” responses.

It should be clear, therefore, that there is no consistent analysis used across 
studies to describe the observed toj or sj performance. The main problem 
though, regarding the fitting of arbitrary functions to data is that these arbi-
trary functions (although they describe adequately the tendency of the data) 
cannot explain the differences obtained in sensitivity measures between the 
tasks (Alcala-Quintana & Garcia-Perez, 2012; Garcia-Perez & Alcala-Quintana, 
2013) and do not address the potential link of the data to the sensory and deci-
sional parameters that may affect judgments (Garcia-Perez & Alcala-Quintana, 
2012). Garcia-Perez and Alcala-Quintana (2012, 2015a,b), therefore, propose the 
use of the model they constructed on the basis of the independent channels 
models of timing judgments in order to better describe participants’ perfor-
mance and gain insight at how the different levels of perception (sensory, de-
cisional, response) affect sensitivity to synchrony/asynchrony and temporal 
order perception. It is still, however, early days for the community to suggest 
other models or to adopt one specific model.

9 Conclusion

In this chapter, we aimed to describe the toj and sj tasks as well as the differenc-
es they yield in the estimation of perceptual latency. As it has been  described, 
research has shown that many factors affect the pss and the twi values such 
as the task, the stimulus type, the analysis method, inherent biases, decisional 
factors, as well as the individual. Progress has also been made in comparing the 
different tasks and trying to disentangle the underlying  processes governing an 
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order and simultaneity response. Future research will help us to further clarify 
the uncertainties associated with the tasks used to measure synchrony percep-
tion, thus allowing us for a better view of how the brain manages to maintain 
the percept of synchrony where really there is none.
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Perceived Temporal Order and Simultaneity: 
Beyond Psychometric Functions

Miguel A. García-Pérez and Rocío Alcalá-Quintana

1 Introduction

Perception via the traditional senses of vision, audition, touch, gustation, or 
olfaction implies mechanisms (the sense organs) and neural structures (the 
sensory pathways) that transduce, transmit, and process physical energy (in vi-
sion, audition, and touch) or molecules (in gustation and olfaction). The same 
holds for the non-traditional senses of nociception, thermoception, equilibrio-
ception, and others. In contrast, time does not emanate from a physical source 
and we do not have a sense organ for time, yet we have a vivid experience of it. 
Perception of time (chronoception) for brief events manifests in two remark-
able abilities arguably subserved by separate processes. One is the ability to 
discriminate whether or not two punctate (instantaneous) events occurred si-
multaneously; the other is the ability to discriminate whether or not two brief 
events lasted the same duration. These punctate or brief events are delivered 
by presenting stimuli that can be perceived with our senses. Those stimuli are 
the occasion for some elusive machinery in the brain to extract the signals that 
render our perception of the time of occurrence of punctate events and our 
perception of temporal durations.

The duration of a stimulus is defined as the time elapsed between its on-
set and its offset. Then, perception of the duration of a stimulus presentation 
requires a second-stage process based on the output of first-stage processes 
determining the perceived onset and offset of the stimulus. This chapter fo-
cuses only on the first-stage processes and, specifically, on the methods used 
to assess their functioning and the utility of such methods to characterize tim-
ing processes. First-stage processes imply capture and transduction at the cor-
responding sense organ, followed by transmission of the sensory signals up 
the applicable pathway onto a central mechanism in the brain. Transduction, 
transmission, and processing of stimulus signals incur temporal delays that 
differ across sensory modalities but such delays also vary across stimulus types 
within the same modality and across repeated presentations of the exact same 
stimulus. When two punctate events occur simultaneously, the arrival times of 

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



García-Pérez and Alcalá-Quintana�64

<UN>

their signals at the central mechanism reveal differences in speed of process-
ing. Investigating such differences across and within sensory modalities would 
be simple if arrival times were accessible, that is, if the location of the target 
center in the brain were identified and the arrival times of sensory signals at 
that center were recorded electrophysiologically. Because this is currently im-
possible, indirect behavioral data must be used instead.

The behavioral (psychophysical) methods more widely used for this purpose 
are the binary simultaneity judgment (SJ2) task and the also binary temporal-
order judgment (TOJ) task, which consist of presenting two stimuli (A and B) 
with a temporal offset, temporal delay, or stimulus onset asynchrony (SOA) that 
varies across trials. Both tasks are variants of the single-presentation method, 
whose defining characteristic is that each trial delivers a single stimulus mag-
nitude (an SOA here) and requests a categorical response from the observer. In  
an SJ2 trial, observers report whether or not the stimuli A and B were subjec-
tively presented simultaneously; in a TOJ trial, instead, observers report which 
of the two stimuli appeared to be presented first, with no option to report sub-
jective simultaneity even if that were what the observer perceived. The ternary 
simultaneity judgment (SJ3) task blends SJ2 and TOJ tasks by allowing observers  
to report the three judgments: A first, B first, or A and B simultaneous (Ulrich, 
1987). A further response option has occasionally been allowed for observers 
to report that presentation was subjectively non-simultaneous but order was 
impossible to identify (e.g., Weiß & Scharlau, 2011), making up a 4-ary simulta-
neity judgment (SJ4) task. Discussion of the SJ4 task will be deferred to a later 
section of this chapter.

A second set of psychophysical methods has also been used that belongs in 
the category of dual-presentation or multiple-presentation methods. In these 
cases, two or more SOAs are sequentially presented in a trial and the observer 
is asked to indicate which of them satisfies some condition. For instance, in 
the so-called two-alternative forced-choice (2AFC) task, each trial presents two 
pairs of stimuli (i.e., a pair of SOAs) and the observer reports in which pair 
the presentation was more (or less) synchronous (Allan & Kristofferson, 1974; 
Fouriezos et al., 2007; Grant et al., 2004; Pastore & Farrington, 1996; van de Par 
& Kohlrausch, 2000; Yarrow et al., 2016); in the match-to-sample or ABX task, 
each trial presents a sample pair (i.e., a sample SOA) followed by two other 
pairs (two more SOAs) and the observer reports in which of the latter two 
pairs the (a)synchrony was more similar to (or more different from) that of 
the sample (Hillenbrand, 1984; Liberman et al., 1961; McGrath & Summerfield, 
1985; van Eijk et al., 2009). Dual- and multiple-presentation methods are used 
less often than single-presentation methods and they will not be covered in 
detail.
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Whichever task is used to collect data, observers’ responses are tallied to 
compute the proportion of trials in which each judgment was reported at each 
of a set of SOAs. The most common method of analysis of data consists of fit-
ting psychometric functions, continuous curves that match the path of the data.  
Figure 12.1 shows sample psychometric functions for SJ2, SJ3, and TOJ tasks 
without the data that might have given rise to them. When binary responses 
are involved (i.e., in SJ2 and TOJ tasks), only the psychometric function for 
one of the responses is needed (Figs. 12.1a and 12.1c); when ternary responses 
are involved (i.e., in SJ3 tasks), only the psychometric functions for two of the 
responses are needed although all three are often plotted (Fig. 12.1b).

The form of the function fitted to the data varies greatly in the literature. For 
TOJ data, the most common option is to fit a cumulative Gaussian or logistic 
function, which can be referred to an observer model with simple sensory and 
decisional components. For SJ2 data, the most common option is to fit a scaled 
Gaussian, which merely provides a description of the data because it cannot 
be referred to any observer model. Because SJ2 data are generally asymmetric 
(as illustrated in Fig. 12.1a) its rising and declining parts are sometimes fitted 
separately using monotonic functions, which describes the data better but 
again cannot be referred to an observer model. For SJ3 data, a mixture of these 
strategies is used across the implied psychometric functions (e.g., van Eijk et 
al., 2008), a strategy with which the probability that some response is given 
often falls short of (or exceeds) unity. The fitted functions are then used to 
summarize performance via measures such as the point of subjective simultane-
ity (PSS), the synchrony range (SR), the synchrony boundaries (SBs) or the just  
noticeable difference (JND). The PSS is defined as the SOA at which the psycho-
metric function for “simultaneous” responses peaks in SJ2 or SJ3 tasks, or as the  
SOA at which the psychometric function evaluates to 0.5 in TOJ tasks (dotted 
vertical lines in Fig. 12.1). The SR is defined as the range of SOAs within which 
“simultaneous” responses are more prevalent than any other response in SJ2  
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Figure ��.� Sample psychometric functions for SJ2 data (a), SJ3 data (b), and two sets of TOJ 
data (c). SOAs are assumed to be delivered via audiovisual stimulus pairs, with 
negative (positive) SOAs indicating that auditory onset preceded (lagged) visual 
onset.
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or SJ3 tasks and the SBs are the SOAs at the endpoints of the SR. The JND, also 
known as the difference limen (DL), is half the range of SOAs over which the 
psychometric function in TOJ tasks increases from, say, 0.25 to 0.75.

The three tasks can be used to estimate all of these measures, but many 
within-subjects studies involving two or more of the tasks have shown that 
the estimates are inconsistent (Bedard & Barnett-Cowan, 2016; Binder, 2015; 
Capa et al., 2014; Donohue et al., 2010; Fujisaki & Nishida, 2009; Li & Cai, 2014; 
Linares & Holcombe, 2014; Love et al., 2013; Sanders et al., 2011; Schneider &  
Bavelier, 2003; van Eijk et al., 2008; Vatakis et al., 2008). These inconsistencies 
are difficult to understand considering that only the question that observers 
respond to at the end of each trial differs across tasks and, hence, that the un-
derlying timing processes should be invariant. Analogous inconsistencies have 
been found in within-subjects studies in which performance on single- and 
dual-presentation tasks was compared (Stevenson & Wallace, 2013).

One reason for these inconsistencies is that conventional psychometric 
functions only capture observed performance, which is the final outcome of 
the interplay of sensory (timing), decisional, and response processes involved 
in any psychophysical task. Then, even on the reasonable assumption that the 
timing component of performance is identical in SJ2, SJ3, and TOJ tasks, dif-
ferences in decisional and response components would produce differences 
in observed performance across them. These differences are somewhat mis-
leading because they do not reflect actual differences in timing processes. 
Thus, separating out the components of observed performance is needed for 
a proper characterization of timing processes that is not tainted by the effects 
of other processes. Accomplishing this separation requires psychometric func-
tions whose mathematical form is derived from a suitable observer model that 
explicitly represents all of the intervening components. As discussed earlier, 
cumulative Gaussian or logistic psychometric functions fitted to TOJ data can 
be referred to an observer model whereby “A first” responses are given when 
a decision variable exceeds a criterion and “B first” responses are given oth-
erwise. Sensible as this observer model may seem, it makes an inconvenient 
prediction for SJ2 or SJ3 tasks, namely, that the observer will never give “simul-
taneous” responses. In other words, if observers had the ability that this model 
attributes them in the TOJ task (i.e., if they could always tell temporal order), 
why would they lose that ability in SJ2 or SJ3 tasks and report perceived simul-
taneity so often? Or, in reverse, if observers’ reports of perceived simultaneity 
in SJ2 and SJ3 tasks are genuine, by what mechanism do they give temporal-
order responses in analogous occasions under the TOJ task? The TOJ task pre-
cludes reporting simultaneity, which does not imply that such judgments are 
never made. Then, TOJ data must necessarily be affected by how observers go 
about (mis)reporting temporal order when they perceive simultaneity.
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The goal of this chapter is to describe an observer model that explicitly 
represents the timing, decisional, and response processes involved in single-
presentation timing tasks, thus offering an integrated and coherent account 
of performance across tasks. The model elaborates on ideas put together by 
Sternberg and Knoll (1973) in their independent channels models, which were 
further developed by Schneider and Bavelier (2003). The resultant psychomet-
ric functions include parameters that characterize the underlying timing, de-
cisional, and response processes. The model has been empirically validated 
extensively and the focus of this chapter is instead on its underpinnings and on 
practical aspects of its use for testing hypothesis or making inferences about 
how timing processes differ across manipulations (e.g., cuing) or across groups 
of observers (e.g., patients vs. normal controls).

2 The Observer Model

The observer model makes explicit assumptions about each of the processes 
whose participation is needed to respond on each trial. These processes in-
clude a sensory component that provides the evidence on which timing judg-
ments are based, a decisional component that makes a judgment based on the 
sensory evidence, and a response component by which the judgment is ex-
pressed. The next three subsections describe each of these components and 
their referents, also characterizing them formally. The fourth subsection illus-
trates how the interplay of components shapes the psychometric functions in 
SJ2, SJ3, and TOJ tasks.

2.1 The Sensory Component
A punctate temporal event is signaled physically by, for example, the onset of a 
stimulus. Each of the two stimuli used to deliver an SOA must be peripherally 
processed by the corresponding sense organ and their neural signals must be 
transmitted up the corresponding sensory pathway onto a central mechanism. 
These operations incur delays that vary across sensory modalities and across 
stimuli within the same modality, resulting in differences in arrival time at the 
central mechanism and providing the evidence for timing judgments. Such de-
lays are not fixed so that variability occurs across repeated presentations of the 
same stimulus.

The concept of arrival time is broader than what the previous description 
suggests, which only referred to physiological components. This may suffice 
in a description for simple stimuli such as a flash of light or a sound beep, 
for which the arrival time of signals at a central mechanism is perhaps also 
the time at which the presence of the stimulus is identified by the observer, 
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which is what actually yields the arrival time referred to in the model. With 
vestibular stimuli such as yaw rotation, signals are surely reaching the brain as 
soon as the movement starts but the observer will not identify the motion un-
til some aspect of it (amplitude, speed, acceleration, etc.) attains a necessary 
magnitude determined by the observer’s sensitivity. Similarly, for time-varying 
stimuli such as single-syllable utterances in audiovisual speech, auditory and 
visual signals reach the brain continually from the nominal onset of the stimu-
lus but the referents for auditory and visual arrival times in the model are the 
auditory identification of certain sounds and the visual identification of their 
articulations, respectively.

Across repeated presentations, arrival times will have a distribution that is 
impossible to determine empirically. Nevertheless, some distributions may be 
hypothesized that satisfy the physical constraint of causality: The arrival time 
of a stimulus signal cannot precede the onset of the stimulus itself. If stimulus 
onset is regarded as the origin of time, suitable distributions for arrival times 
must have all their probability mass on the positive real line. This constraint 
rules out the normal distributions included in most observer models in psy-
chophysics. Figure 12.2 shows three plausible candidates, namely, a shifted ex-
ponential distribution given by

 ( ) ( )= λ −λ − τ  ≥ τ exp ,g t t t , (1)

a shifted gamma distribution given by

 ( ) ( ) ( ) ( )1 exp ,
α

α−

Γ

λ
= − τ −λ − τ  ≥ τ α

g t t t t , (2)

where Γ is the gamma function, and a log-normal distribution given by

 ( ) ( )( )2

2

log1
exp , 0

22

 − −µ
 = ≥

σ πσ  

t
g t t

x
. (3)

(a) Shifted exponential

Arrival time (ms)

λ = 0.017
τ = 60.00
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(b) Shifted gamma
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τ = 35.15
α = 2.0
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(c) Log-normal

Arrival time (ms)
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σ = 0.472
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Figure ��.� Sample distributions of arrival time. (a) Shifted exponential distribution given by 
Eq. 1. (b) Shifted gamma distribution given by Eq. 2. (c) Log-normal distribution 
given by Eq. 3. Parameter values are printed in the insets.
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Parameter values are printed in Fig. 12.2 for each distribution, which were 
chosen so that arrival times have the same mean and variance in all cases. The 
form of the distribution of arrival times cannot be determined empirically but 
any particular choice is largely immaterial if it meets the above constraints. 
The shifted exponential distribution in Eq. 1 is simple and easily tractable 
mathematically, and it has often been used to model arrival latencies and 
peripheral processing times (e.g., Colonius & Diederich, 2011; Heath, 1984). 
In addition, this distribution has proven empirically adequate to account for 
observed performance in timing tasks (see García-Pérez & Alcalá-Quintana, 
2012a, 2012b, 2015a, 2015b, 2015c). Thus, and without loss of generality, these are 
the distributions that will be used here.

Because SOAs are typically delivered via two different stimuli (and, gener-
ally, from different sensory modalities), the parameters of the corresponding 
distributions of arrival times will differ. In empirical studies, one of the stimuli 
is regarded as the reference so that SOA is defined as the relative delay with 
which the other (test) stimulus is presented. Thus, negative (positive) SOAs 
indicate that the onset of the test precedes (lags) the onset of the reference. 
Two distributions must thus be considered. The distribution of arrival times 
for the reference stimulus is subject to the constraint illustrated in Fig. 12.2, 
because the origin of time is set at its physical onset; in contrast, the (generally 
different) distribution of arrival times for the test stimulus will be shifted to the 
right or to the left according to the applicable SOA, potentially encroaching 
into the negative region of a time line whose origin is not at its own onset but 
at the onset of the reference. Formally, the arrival times (or perceived onsets, or 
perceived latencies) Tr and Tt of reference and test stimuli are random variables 
with densities gr and gt given by

 ( ) ( )( ) { }exp , , r, t = λ −λ − Δ + τ ≥ Δ + τ ∈ i i i i i i ig t t t t t i  (4)

where Δti is the onset time of stimulus i and λi and τi are the parameters of 
each distribution, which surely vary across observers and maybe also across 
experimental conditions. By the convention that sets the origin of time at the 
onset of the reference, Δtr = 0 by definition and Δt ≡ Δtt is the SOA with which 
the pair is presented. The top row in Fig. 12.3 shows sample distributions at 
three different SOAs.

As discussed later, parameters λi and τi affect the shape of the observed psy-
chometric function and provide information about speed of processing and 
variability of arrival times: The mean and standard deviation of arrival times 
for stimulus i are 1/λi + τi and 1/λi, respectively. These parameters thus inform 
of the sensory limits for perception of temporal order. If the standard devia-
tions of arrival times are small, temporal order can be correctly perceived at 
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smaller SOAs than when standard deviations are large. Furthermore, large dif-
ferences in the standard deviation of arrival times across stimuli produce large 
differences in the accuracy with which temporal order can be perceived at pos-
itive vs. negative SOAs (i.e., when the test stimulus precedes or lags the refer-
ence stimulus). Finally, large differences in average arrival time across stimuli 
produce discrepancies between physical and perceptual synchrony.

2.2 The Decisional Component
On any given trial, the perceived onset of each stimulus is a random value 
drawn from the corresponding distribution. These perceived onsets provide 
the evidence for a timing judgment, which the observer makes by applica-
tion of a decision rule. Sternberg and Knoll (1973) and Schneider and Bave-
lier (2003) discussed several decision rules tailored to the response format of 
particular variants of the task. To detach the decisional component from the 
response component imposed by the task, we will consider a decision rule by 
which observers only make judgments at this stage, irrespective of the type of 
response later requested by the task. Observers’ spontaneous reports to the ef-
fect that sometimes they guessed a response in TOJ trials because they could 
not tell which stimulus was presented first provides evidence that judgments 
precede responses and that the three types considered explicitly only in SJ3 
tasks are made in all tasks. To better understand why judgments and responses 
must be separated, consider an experiment in which observers are given the 
SJ2, SJ3, or TOJ response options at random at the end of each trial. Because 
response options are revealed only after the stimuli were extinguished, a judg-
ment must have been made before it can be expressed as a response. Such ran-
dom mixture of trials from several tasks does not seem to have ever been used 
in timing perception, but Schneider and Komlos (2008) used it in a different 
context to make a similar point.

The decision variable is the arrival-time difference (or perceived-onset dif-
ference, or latency difference) D = Tt − Tr, which has the asymmetric Laplace 
distribution

 
( )

( )

( )

r t
r

r t

r t
t

r t

exp if
;  

exp if

λ λ λ −Δ − τ  ≤ Δ + τ  λ +λΔ =  λ λ −λ −Δ − τ  > Δ + τ λ +λ

d t d t
f d t

d t d t

, 
(5)

where τ = τt − τr. Combination of τt and τr into an aggregate parameter τ is 
a trivial consequence of tasks that involve differencing: The precise arrival 
time of each stimulus is immaterial for the judgment and only the difference 
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 matters. The unfortunate consequence is that neither τt nor τr can be estimat-
ed separately, thus precluding the estimation of average arrival times for each 
individual stimulus although their variability (i.e., 1/λi) can still be estimated. 
In addition, arrival-time differences are well characterized, with mean 1/λt – 1/
λr + τ + Δt and variance 2 2

t r1 / + 1 /λ λ . The bottom row in Fig. 12.3 shows the dis-
tribution of D for each case in the top row, which only shifts location with SOA.

Before an amendment that will be introduced later, the decision rule parti-
tions the domain of D into three regions with boundaries at δ1 and δ2 (see the 
bottom row of Fig. 12.3). Then, “test-first” (TF) judgments arise when D is large 
and negative (D < δ1), “reference-first” (RF) judgments arise when D is large 
and positive (D > δ2), and “simultaneous” (S) judgments arise when D is small  
(δ1 ≤ D ≤ δ2). The probabilit y of each judg ment var ies w ith SOA (Δt), as this shifts  
the distribution of arrival-time differences (see the bottom row of Fig.  12.3). 
Formally, the probabilities pTF, pS, and pRF of each judgment vary with Δt as

 ( ) ( )TF 1 ; Δ = δ Δp t F t , (6a)

 ( ) ( ) ( )S 2 1; ; Δ = δ Δ − δ Δp t F t F t , (6b)

 ( ) ( )RF 21 ; Δ = − δ Δp t F t , (6c)

where

 ( ) ( )

( )

( )

r
r

r t

t
t

r t

;  ; d

exp if
.

1 exp if

−∞Δ = ∫ Δ

λ λ −Δ − τ  ≤ Δ + τ  λ +λ=  λ − −λ −Δ − τ  > Δ + τ  λ +λ

dF d t f z t z

d t d t

d t d t

 

(7)

In principle, δ1 and δ2 could be placed anywhere. An asymmetric placement 
such that δ1 ≠ −δ2 reflects a decisional bias whereby the absolute magnitude 
of the arrival-time difference required to make a TF judgment is not the same 
as that required to make an RF judgment. This may represent a natural bias 
of the observer but it may also be caused by experimental manipulations that 
favor one type of judgment over the other. In contrast, when δ1 = −δ2 (as in the 
bottom row of Fig. 12.3) the decision rule is unbiased. The width δ2 − δ1 reflects 
the operating resolution of the observer: The narrower this region, the smaller 
the arrival-time difference that allows the observer to judge temporal order 
(whether or not such judgment is physically correct; note in the bottom panel 
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of Fig. 12.3a that the probability of an RF judgment is 0.03 even though the test 
stimulus was presented 50 ms before the reference).

As discussed later, the width and placement of the central region in decision 
space has consequences on the shape of the psychometric function under all 
tasks. Hence, estimating the decisional parameters δ1 and δ2 allows separating 
out their influence for an assessment of timing processes. Schneider and Bave-
lier (2003) noted that multiple location parameters are confounded in SJ2 and 
TOJ tasks, something that generalizes to all variants of the single-presentation 
method (García-Pérez & Alcalá-Quintana, 2013; Yarrow et al., 2011). Inspection 
of Eqs. 6 and 7 reveals that the location parameters affected here by this con-
found are τ, δ1, and δ2, and that only the aggregates δ1 − τ and δ2 – τ can be 
estimated. A compromise (though suboptimal) solution is to enforce the as-
sumption of no decisional bias, that is, to assume δ1 = −δ and δ2 = δ, leaving δ 
as the only free parameter representing the half-width of a symmetric central 
region in decision space. The implications as well as other ways around this 
confound will be discussed later in this chapter.

2.3 The Response Component
In each trial, the observer must report the judgment arising from the timing 
and decisional components just discussed, using the response format that the 
task allows. In addition, response errors may occur by which observers misre-
port their judgment. Evidence of response errors is often found empirically in 
the form of, e.g., exceptional TF responses at large negative SOAs where RF 
responses have been given in most other trials. These errors may be caused 
by carelessness, by an unnatural arrangement of the response interface, or by 
insufficient practice to use it properly. The probability of a response error is 
generally small, but errors seem to affect some responses more often than oth-
ers (for empirical examples, see García-Pérez & Alcalá-Quintana, 2012a, 2012b, 
2015a, 2015b, 2015c). The response component thus comprises the mapping of 
judgments onto one of the responses allowed by the task, with a potential for 
misreporting such judgments due to errors. This component produces the final 
data that delineate the observed psychometric function.

Mapping judgments onto responses is straightforward in the SJ3 task be-
cause there is a distinct response option for each possible judgment. In the 
absence of response errors, the psychometric functions in the SJ3 task are di-
rectly given by the functions pTF, pS, and pRF in Eqs. 6 above. Response errors 
imply that each type of judgment has some probability of being misreported 
and, in such event, that the two forms that the misreport may take also have 
different probabilities. Let ( )SJ 3

Xε  denote the probability of misreporting judg-
ment X in the SJ3 task and let κX–Y denote the probability of misreporting it as 
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response Y. Then, the final psychometric functions for TF, S, and RF responses 
in SJ3 tasks are

 

( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( )

SJ 3 SJ 3 SJ 3
TF TF TF S S–TF S

SJ 3
RF RF–TF RF

1

,

Ψ Δ = −ε Δ + ε κ Δ +

ε κ Δ

t p t p t

p t  (8a)

 

( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )

SJ 3 SJ 3 SJ 3
S TF TF–S TF S S

SJ 3
RF RF–TF RF

1

1 ,

Ψ Δ = ε κ Δ + −ε Δ +

ε − κ Δ

t p t p t

p t  (8b)

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( )

SJ 3 SJ 3 SJ 3
RF TF TF–S TF S S–TF S

SJ 3
RF RF

1 1

1 .

Ψ Δ = ε − κ Δ + ε − κ Δ +

−ε Δ

t p t p t

p t
 (8c)

These expressions are easily unpacked with the help of the tree diagram in 
figure 12.4b of García-Pérez and Alcalá-Quintana (2012a), which is not repro-
duced here. Note also that Eqs. 8 reduce to Eqs. 6 if all εs are zero (i.e., in the 
absence of response errors). The psychometric functions in Fig. 12.1b for the 
SJ3 task arise from these equations (without response errors) when 1/λt = 40,  
1/λr = 90, τ = 60, and δ = 100.

Mapping judgments onto responses is also straightforward in SJ2 tasks be-
cause TF and RF judgments are unambiguously aggregated into a category of 
non-simultaneous judgments. Under our notation for error parameters, the 
psychometric function for S responses in SJ2 tasks is

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )SJ2 SJ2 SJ2 SJ2
S TF TF S S RF RF1Ψ Δ = ε Δ + −ε Δ + ε Δt p t p t p t  (9)

(see the tree diagram in figure 12.4a of García-Pérez & Alcalá-Quintana, 2012a), 
which reduces to Eq. 6b when all εs are zero. The psychometric function in Fig. 
12.1a arises from this equation (without response errors) also when 1/λt = 40, 1/
λr = 90, τ = 60, and δ = 100, which explains why the psychometric function for 
S responses is identical in Figs. 12.1a and 12.1b.

Finally, TOJ tasks force observers to give TF or RF responses upon S judg-
ments. The mapping thus requires an extra response bias parameter ξ reflect-
ing the probability with which the observer gives RF responses in such cases. 
Incorporating response errors as before (see the tree diagram in figure 12.4c 
of García-Pérez & Alcalá-Quintana, 2012a), the psychometric function for RF 
responses in TOJ tasks is

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )TOJ TOJ TOJ
RF TF TF S RF RF1 ,Ψ Δ = ε Δ +ξ Δ + −ε Δt p t p t p t  (10)
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which reduces to Eq. 6c plus a fraction of Eq. 6b when all εs are zero. Also in the 
absence of errors, when ξ = 0 (i.e., when the observer has a strong response bias 
in the direction of never giving RF responses upon S judgments) Eq. 10 reduces 
to Eq. 6c and, thus, the psychometric function for RF responses in the toj task 
is identical to that for RF responses in the SJ3 task. Alternatively, when ξ = 1 
(i.e., when the observer has a strong bias in the direction of always giving RF re-
sponses upon S judgments) Eq. 10 reduces to the sum of Eqs. 6b and 6c and, thus, 
the psychometric function for RF responses in the TOJ task is identical to the 
sum of the psychometric functions for RF and S responses in the SJ3 task. The 
psychometric functions shown in Fig. 12.1c for the TOJ task arise from Eq. 10 also 
without response errors and with parameter values as before (1/λt = 40, 1/λr =  
90, τ = 60, and δ = 100); additionally, ξ = 0.85 for the continuous curve whereas  
ξ = 0.15 for the dashed curve. For cases in which ξ = 0.5, see Fig. 12.4 below.

Error parameters also have an effect on the final shape of the psychometric 
functions under all tasks, as does the response bias parameter ξ in TOJ tasks. 
These effects will be described in the next section. Estimating the response 
bias parameter ξ that operates in TOJ tasks is crucial for an understanding of 
some nagging empirical results; in contrast, estimating error parameters (the 
εs and κs in Eqs. 8–10 above) is theoretically uninteresting but useful to re-
move contamination affecting estimates of the timing and decisional param-
eters described above.

2.4 Overall Effects on the Shape of the Psychometric Function
In an empirical study, the observed psychometric function reflects the joint in-
fluence of all the components just discussed. They affect the overall shape, lo-
cation, and slope of the psychometric function so that changes in any of these 
characteristics across experimental conditions or across groups of observers 
cannot be arbitrarily attributed to any of the components. Recourse to model-
based psychometric functions for the analysis of data is needed to separate out 
those influences. We mentioned earlier that this is not achievable in full when 
the data are collected with single-presentation methods because the task con-
founds some of the parameters of interest. Ways around this problem will be 
discussed later in this chapter, but it is useful at this point to consider several 
scenarios that illustrate the way in which all parameters contribute to shaping 
the observed psychometric functions. We will leave response errors aside in 
this presentation, which generally affect only the asymptotes of the psycho-
metric functions (for a discussion and illustration of them in the context of SJ3 
tasks, see García-Pérez & Alcalá-Quintana, 2012b).

Figure 12.4 shows the psychometric functions that arise under two differ-
ent forms for the relative distributions of arrival times of test and reference 
stimuli (top row) and two different widths for the symmetric central region in 
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decision space (left column). Consider first the top-right panel in the 2×2 array 
of psychometric functions, for the case in which the arrival-time distributions 
for reference and test stimuli differ in offset (parameters τr and τt) but not in 
spread (parameters λr and λt). The psychometric function for S responses in 
SJ2 or SJ3 tasks (black curve) is symmetric because λr = λt, and peaks at τr − τt. 
In the panel underneath, when the central region in decision space is narrow-
er, the psychometric function for S responses keeps these characteristics but it 
is narrower and shorter as a result of higher resolution to judge temporal order. 
In both cases, the psychometric function for RF responses in the TOJ task can 
span a broad range of shapes and locations due to the response-bias parameter 
ξ (blue curves), which decouples observed performance in SJ and TOJ tasks 
even when timing and decisional parameters are identical.
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Figure ��.4 Psychometric functions in SJ2, SJ3, and TOJ tasks in four different scenarios 
resulting from the combination of two cases for the distributions of arrival times 
(top row) and two cases for the width of the (symmetric) central region in deci-
sion space (left column). In each of the other four panels, solid red, black, and 
blue curves are the psychometric functions for TF, S, and RF responses, respec-
tively, in the SJ3 task (see legend in the bottom-left panel). The solid black curve is 
also the psychometric function for S responses that would be observed in an SJ2 
task. The solid blue curve is also the psychometric function for RF responses that 
would be observed in a TOJ task if ξ = 0; the dashed and dotted blue curves are 
those that would be observed in the TOJ task if ξ = 0.5 or ξ = 1, respectively.
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By comparison, λr ≠ λt (panels on the left side of the 2×2 array) renders 
asymmetric functions that are analogously affected by the width of the central 
region and by the mismatch between τr and τt. However, note that the peak of 
the psychometric function for S responses in SJ2 and SJ3 tasks (black curves) 
does not occur at τr − τt in these conditions.

Given their multiple determinants, PSSs or JNDs are not dependable for a 
characterization of timing processes. The data ask instead for an alternative 
analysis that can separate out these influences. Fitting model-based psycho-
metric functions in which these influences are captured by distinct parame-
ters thus allows proper inferences about how experimental manipulations or 
group membership affect timing, decisional, or response processes. The next 
section summarizes the empirical evidence supporting this model of perfor-
mance in timing tasks.

3 Empirical Evidence Supporting the Model

A theoretical model allows extracting latent aspects that are not directly ac-
cessible via PSSs, SRs, JNDs, or other indices based on observed performance. 
However, these benefits can only be gained if the model offers a satisfactory 
account of empirical data, not only in terms of fitting data adequately but also, 
and more importantly, when model predictions are supported by the data. If 
this is the case, estimated model parameters can then be subsequently ana-
lyzed in search for an interpretation of experimental outcomes in terms of tim-
ing, decisional, and response processes.

Testing the adequacy of a model requires assessing its success at fitting em-
pirical data. Although a model can never be proven correct, one expects an 
adequate model to pass goodness-of-fit tests the stated percentage of times 
(García-Pérez, 2017): At, say, the 5% significance level, an adequate model will 
be rejected in about 5% of the occasions; a meaningfully larger number of 
 rejections indicates inadequacy. The model gains further support under strin-
gent goodness-of-fit tests involving predictions to the effect that some param-
eters must remain invariant across experimental manipulations.

This model has been subjected to the latter type of test extensively, in the 
two forms described next. Firstly, recall that timing parameters (i.e., λr, λt, τr, 
and τt) reflect delays in capture and transmission of sensory information that 
should not be affected by which question the observer responds to at the end 
of each trial (i.e., whether data are collected with SJ2, SJ3, or TOJ tasks). These 
parameters should thus be invariant across tasks, whereas response and deci-
sional parameters would reasonably vary across tasks. If the model is adequate, 
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common values for these timing parameters should provide a satisfactory ac-
count of SJ and TOJ data collected in within-subjects studies under otherwise 
identical experimental conditions. This type of data have been reported in a 
number of independent studies (e.g., Capa et al., 2014; Fujisaki & Nishida, 2009; 
Li & Cai, 2014; Linares & Holcombe, 2014; Matthews & Welch, 2015; Sanders et 
al., 2011; Schneider & Bavelier, 2003; van Eijk et al., 2008). An analysis of the 
455 data sets from those studies supported the expectation of common timing 
parameters across tasks: The model including common timing parameters for 
all tasks was rejected in 24 (5.27%) of the occasions at the 5% significance level 
(see García-Pérez & Alcalá-Quintana, 2012b, 2015a, 2015b).

Secondly, because the model includes parameters that separately character-
ize the distribution of arrival latencies for test and reference stimuli, manipu-
lations that affect the sensory processing of one stimulus but not the other 
should result in data that can be accounted for with common parameter values 
for the non-manipulated stimulus along with parameter values that vary for the 
other stimulus across the conditions in which it is manipulated. The analysis of 
SJ2 data on asynchronous audiovisual speech in an experiment in which only 
the visual stimulus was manipulated in four different ways (Magnotti, Ma, &  
Beauchamp, 2013) supported this prediction: Fitted under the stated con-
straint, the model was rejected at the 5% significance level for only 1 of 16 ob-
servers (6.25%; see García-Pérez & Alcalá-Quintana, 2015c).

In all of the analyses just mentioned, model psychometric functions fol-
lowed very closely the path of empirical data to capture characteristics that 
conventional psychometric functions (i.e., arbitrary logistic or Gaussian func-
tions) could not accommodate. These include asymmetries in SJ2 and TOJ 
data, relatively broad plateaus in SJ2 data, and intermediate regions of reduced 
slope in TOJ data. This ability to account for subtle features of the data pro-
vides additional qualitative support for the model and indicates that observed 
performance reflects the interplay of timing, decisional, and response process-
es. As discussed in the next section, summary performance measures such as 
PSSs, SRs, or JNDs are insufficient (and misleading) to identify relevant differ-
ences in timing processes across groups or experimental conditions.

4 PSSs, JNDs, and SRs vs. Interpretation of Model Parameters

The following discussion will leave the TOJ task aside. As shown in Fig. 12.4, 
the irrelevant response-bias parameter ξ strongly affects the shape of the ob-
served psychometric function so as to make PSSs and JNDs uninformative and 
uninterpretable. To keep things simple, the discussion will focus on the SJ2 
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task although consideration of the SJ3 task yields analogous outcomes. Also, 
we will consider the SR instead of the JND.

The top row in Fig. 12.5 shows two scenarios regarding timing processes, 
with latency distributions that are in both cases identical for test and refer-
ence stimuli except for a shorter average latency for the reference stimulus. 
Compared to the left side, the scenario on the right side depicts latency dis-
tributions that are narrower and closer to stimulus onset, as one might expect 
in an experimental condition in which (or in a group of observers for whom) 
latencies are shorter and subject to less variability. Thus, on the left side, arrival 
latencies for reference and test stimuli have means 1/λr + τr = 100 and 1/λt + τt = 
140, respectively, whereas their standard deviations are identically valued at 1/
λr = 1/λt = 50; on the right side, arrival latencies have instead means 1/λr + τr = 
45 and 1/λt + τt = 85 and standard deviations 1/λr = 1/λt = 25. One would gener-
ally like to know whether differences between groups or experimental condi-
tions occur at the level of timing processes (i.e., their speed and variability), 
and these parameters convey such information.

These two scenarios regarding timing processes can be combined with the 
two different scenarios regarding decisional processes that are illustrated on 
the left of Fig. 12.5. At the top, the central region for simultaneity judgments is 
broader than it is at the bottom (i.e., δ = 100 at the top, compared to δ = 50 at 
the bottom). A broader central region implies that observers need larger dif-
ferences in arrival time to identify temporal order (i.e., they have less ability to 
tell small differences in arrival time). This is also another characteristic that 
may differentiate groups or experimental conditions, and one that a researcher 
would like to know about.

Because these aspects are captured by model parameters (i.e., δ, the λs, and 
the τs), fitting model-based psychometric functions to estimate them provides 
all the necessary information for inferences about the timing and decisional 
components of observed performance, and also about how they vary across 
groups or experimental conditions (for detailed examples, see García-Pérez & 
Alcalá-Quintana, 2015b, 2015c). Fitting the model and obtaining parameter es-
timates is straightforward with the software described in Alcalá-Quintana and 
García-Pérez (2013).

This method of analysis is in sharp contrast with the routine calculation of 
PSSs and SRs (or JNDs), whose values are printed in each panel in the 2×2 array 
of psychometric functions at the bottom right of Fig. 12.5. Note that the PSS is 
entirely immune to these differences in timing and decisional processes, sitting 
at an SOA of −40 ms in all cases. In turn, the SR is also almost identical across 
differences in timing processes (center and right columns) and it is only slight-
ly affected by differences in decisional processes (center and bottom rows). 
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PSSs and SRs cannot portray differences in the underlying processes. Note that 
fitting arbitrary psychometric functions in these conditions will also not do jus-
tice to the data. The scaled Gaussian that is often fitted to SJ2 data cannot ap-
proximate the shapes described by the psychometric functions in Fig. 12.5, and 
their parameters cannot be referred to underlying processes either.

5 Shortcomings, Variants, and Extensions

This section discusses two variants of timing tasks that are useful for address-
ing some of the issues that arise in the use of single-presentation methods, 
namely, the likely presence of a fourth type of judgment and the problems 
arising from an inescapable confound.

5.1 The SJ4 Task
As presented thus far, the model assumes that only three judgments are pos-
sible: stimulus A subjectively first, stimulus B subjectively first, or A and B 
subjectively simultaneous. This assumption embodies the theoretical posi-
tion that perception of non-simultaneity is necessary and sufficient for per-
ception of temporal order: If observers perceive asynchrony, they also identify 
temporal order (Allan & Kristofferson, 1974; Baron, 1969). An alternative view 
(Hirsh & Sherrick, 1961) is that perception of non-simultaneity is a necessary 
but insufficient condition for perception of temporal order: Perception of 
asynchrony may still not allow observers to identify temporal order. This latter 
stance assumes a fourth type of judgment whose existence has been disputed 
for decades. There is, however, direct and indirect evidence of its presence.

Direct evidence comes from the only (to our knowledge) empirical study in 
which an SJ4 task was used to allow observers to report this fourth judgment 
(Weiß & Scharlau, 2011). Although this judgment was never reported by some 
of their observers, aggregated data in the two experimental conditions of their 
experiment 1 (see their figure 5) revealed that these judgments are maximally 
prevalent at SOAs around either end of the SR, with a notch around the point 
where simultaneous responses are maximally prevalent. These data suggest 
that the fourth judgment is associated with latency differences that are suf-
ficiently large to judge non-simultaneity but not enough to identify tempo-
ral order. In other words, instead of the three regions in which decision space 
was partitioned in the model, extra regions flanking the central region for S 
judgments seem necessary. Figure 12.6 shows an extension of the model along 
these lines and illustrates how the probability of each judgment varies with 
SOA, namely,
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 ( ) ( )TF 1 ;Δ = δ Δp t F t  (11a)

 ( ) ( ) ( )S 3 2; ; Δ = δ Δ − δ Δp t F t F t  (11b)

 ( ) ( )RF 41 ; Δ = − δ Δp t F t  (11c)

 ( ) ( ) ( ) ( ) ( )U 4 3 2 1; ; ; ; Δ = δ Δ − δ Δ + δ Δ − δ Δp t F t F t F t F t  (11d)

where U stands for “uncertain about order, though not simultaneous”. Error 
parameters can also be introduced in this model.

Indirect evidence on the U judgment also exists that comes from the joint 
analysis of SJ2 and TOJ data in within-subjects studies. García-Pérez and 
 Alcalá-Quintana (2015a, 2015b) reported substantial evidence to the effect 
that the central region in decision space is broader in TOJ tasks than it is in 
SJ2 tasks. This result can easily be interpreted under the partition illustrated 
in Fig. 12.6. In SJ2 tasks, only the boundaries δ2 and δ3 are operative because  
arrival-time differences within [δ2, δ3] render S judgments and all others ren-
der non-simultaneous judgments (whether or not temporal order was ad-
ditionally identified). In contrast, only δ1 and δ4 are operative in TOJ tasks  
because arrival-time differences lower than δ1 render TF judgments, arrival-
time differences greater than δ4 render RF judgments, and all others force 
observers to misreport their inability to judge temporal order (whether they 
perceived non-simultaneity or simultaneity in such cases). Because δ4 – δ1 ≥ 
δ3 – δ2, the empirical observation of a broader central region in TOJ tasks is 
consistent with the existence of the U judgment.

reference
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Figure ��.6 Model extension to cover the SJ4 task. The decision space (center panel) includes 
two regions for “uncertain order” (U) judgments flanking the region for S judg-
ments, besides the outer regions for TF and RF judgments. Note that the extra 
regions may have different widths. The right panel shows the resultant psycho-
metric function for each judgment category (colored as their labels are in the 
center panel) under the sample arrival-time distributions for test and reference in 
the left panel.
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To look further into this issue, we conducted a study using the SJ4 task with 
identical visual stimuli (Gabor patches) presented on the left and on the right 
of a central fixation point on a monitor running at 60 Hz so that SOAs varied 
in steps of 16.7 ms. The patch on the right was regarded as the reference and 
data were collected in three consecutive 192-trial sessions with SOAs deter-
mined by an adaptive procedure (García-Pérez, 2014). On each trial, left and 
right stimuli were abruptly presented with the prescribed SOA and they were 
both removed simultaneously 750 ms after the onset of the stimulus presented 
second.  Observers then used a keyboard to enter the response that described 
their judgment. Figure 12.7 shows data and fitted psychometric functions (in-
corporating error parameters) for each of 19 observers, plus a summary panel.1

Most notably, fitted curves follow the path of the data very closely in all cases. 
At the 5% significance level, the G2 statistic rejected the model for observer #3 
only, but even in that case the agreement between data and fitted curves is vis-
ibly good. In general, U responses occurred at the small SOAs expected under 
the model, with an imbalance at negative vs. positive SOAs that is consistent 
with the allowance for decision ranges of different width at negative vs. positive 
arrival-time differences (see Fig. 12.6). Some observers gave U responses rela-
tively frequently (e.g., #1 and #5). Other observers gave U responses sparingly 
(e.g., #9 and #14) or not at all (e.g., #2 and #7). Interestingly, the latter observers’ 
data show bumps of “improper” temporal-order responses (i.e., RF respons-
es at negative SOAs and TF responses at positive SOAs) where U responses 
would be expected (see red and blue data points and curves at small positive 
and negative SOAs for observers #2, #6, #7, #8, #9, #10, #12, #13, #14, #15, #18, 
and #19). It is unclear whether these bumps reflect misreports (i.e., temporal- 
order responses upon U judgments) or authentic reversals of subjective tem-
poral order, but their presence here is consistent with previous evidence to the 
same effect, as discussed next.

Firstly, the SJ3 data of van Eijk et al. (2008) showed bumps of improper 
temporal-order responses that are also found in earlier data sets and which 
prompted Ulrich (1987) to dismiss independent-channels models. Yet, an anal-
ysis under our SJ3 model showed that misreports account for this empirical 
feature within the realm of independent-channels models (García-Pérez &  
 Alcalá-Quintana, 2012b). The present SJ4 data suggest that U judgments—
which must be misreported as TF or RF responses in SJ3 tasks—also contrib-
ute to these bumps.

1 The data, the matlab code used to estimate model parameters and assess goodness of fit, 
and other related Online Material are available in the book’s GitHub repository.
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Secondly, improper temporal-order responses at the SOAs where U responses 
are expected (or given) may indicate authentic reversals of perceived temporal 
order, not guesses upon U judgments. The cause of such reversals is elusive 
but they have been reported in TOJ tasks involving tactile stimuli with arms 
crossed, resulting in N-shaped psychometric functions that are at odds with 
the sigmoidal shapes obtained without arm crossing and with the compara-
tively narrow and peaked shape of SJ2 data with or without arm crossing (see 
Cadieux, Barnett-Cowan, & Shore, 2010; Fujisaki & Nishida, 2009; Yamamoto & 
Kitazawa, 2001;; see also Heed & Azañón, 2014).
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Figure ��.7 SJ4 data and fitted psychometric functions. The grayed panel at the bottom right 
shows aggregated data and averaged psychometric functions across observers, 
and note that U responses in that panel display a pattern analogous to that 
reported by Weiß and Scharlau (2011) also for their aggregated data. Color code 
as in Fig. 12.6.
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We assessed whether N-shaped TOJ data could arise from the presence of 
a region for U judgments in decision space that, by a mechanism still to be 
unraveled, yields reversals of perceived temporal order. For this purpose, we 
derived a theoretical TOJ curve for each observer in Fig. 12.7 by making reason-
able (but speculative) assumptions about how they would have responded in a 
TOJ task. Specifically, RF and TF responses in the SJ4 task would directly trans-
fer into the same responses in the TOJ task, S responses in the SJ4 task would 
be evenly split into TF and RF responses in the TOJ task, and U responses in 
the SJ4 task would be split according to the imbalance of TF and RF responses  
at each SOA in the SJ4 task. If ΨTF, ΨS, ΨRF, and ΨU are the psychometric func-
tions for TF, S, RF, and U responses in Fig. 12.7, the psychometric function for 
RF responses in the TOJ task would thus be ( ) ( )TOJ

RFΨ Δt  = ΨRF(Δt) + ΨS(Δt)/2 +  
ΨU(Δt) × ΨRF(Δt)/[ΨRF(Δt) + ΨTF(Δt)]. The results (not shown) revealed a di-
versity of patterns similar to that reported by Cadieux et al. (2010, figure 2), 
including N-shaped functions. It is still unclear why reversals of perceived tem-
poral order occur, why they seem absent in some observers, or why their preva-
lence varies across experimental conditions, but their relation to intermediate 
regions for U judgments in decision space makes the SJ4 task a useful tool to 
investigate these issues.

It is interesting to note that observer #11 gave very few U responses and did 
not give any S response. One might surmise that this arises from an exquisite 
ability to perceive temporal order and a lack of S and U regions in decision 
space (i.e., δ1 ≈ δ2 ≈ δ3 ≈ δ4). However, the path of TF and RF responses speaks 
against this surmise and suggests instead that observer #11 approached the SJ4 
task essentially as a TOJ task in which S and U judgments are instead misre-
ported as TF or RF responses.

During debriefing, some observers reported effortless identification that the 
left stimulus had been presented first, even if only by a very short time. These 
spontaneous reports are consistent with the outcome (see the Online Mate-
rial) that the interval [δ1, δ2] was generally estimated to be narrower than the 
interval [δ3, δ4], as illustrated in Fig. 12.6. Because the sequential display of 
two visual stimuli at nearby spatial positions induces beta apparent movement 
(Larsen, Farrel, & Bundesen, 1983), this outcome suggests a predisposition to 
perceive rightward beta movement, with (potential) leftward beta movement 
giving instead an impression of non-simultaneous presentations without clear 
identification that the right stimulus was presented first. This is speculative at 
present, but the SJ4 task also proves useful tool to investigate this issue.

It is important to stress that the SJ4 model was fitted with allowance for 
different arrival-time distributions of test and reference stimuli (i.e., λr ≠ λt 
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and τ ≠ 0). Because of the confound mentioned earlier and further discussed 
in the next section, this fitting approach requires the constraint that δ2 = −δ3. 
Estimates of λr and λt nevertheless turned out to be very similar on a subject-
by-subject basis (see the Online Material), which seems reasonable in retro-
spect given that (1) reference and test stimuli were identical Gabor patches 
differing only in their location in the visual field and (2) location in the visual 
field does not affect the processing speed of visual stimuli (García-Pérez & 
 Alcalá-Quintana, 2015b). An alternative approach to fitting these data under 
the constraints that λr = λt and τt = τr is discussed in the next subsection.

5.2 Decisional Bias and the Dual-presentation Task
We mentioned that single-presentation methods always confound several 
 parameters in any model of psychophysical performance. Unfortunately, they 
always confound sensory parameters with decisional parameters, thus pre-
cluding the characterization of timing processes and the identification of the 
cause of observed differences across conditions. Then, the confound affects 
studies aimed at assessing prior entry (a hypothetical sensory acceleration that 
hastens the processing of attended stimuli) or temporal recalibration (an ad-
justment of subjective synchrony due to prolonged exposure to asynchronous 
stimulation). To test these hypotheses, one needs to tell whether observed dif-
ferences across conditions are due to timing or to decisional processes, some-
thing that turns out to be impossible with single-presentation methods. Figure 
12.8 illustrates this confound for an SJ3 task in a hypothetical experiment on 
prior entry with audiovisual stimuli. The column labeled “natural processing” 
reflects a condition in which neither stimulus is favored so that visual and audi-
tory arrival times have their natural distributions; the column labeled  “sensory 
(visual) acceleration” shows what visual arrival times might be like if process-
ing of the visual signal is speeded up: Arrival times advance, as determined by 
τv = 20 compared to τv = 60 in the former case.

The panels underneath show the psychometric functions that would be ob-
tained in each condition. Whether the central region in decision space is cen-
tered (middle row) or displaced (bottom row), visual acceleration displaces the 
psychometric functions to the left. However, the experimental manipulation 
presumably inducing visual acceleration might instead induce only a decision-
al bias. Then, compared to the psychometric functions at the top-left of the 
2×2 array, decisional bias will also produce a leftward shift of the  psychometric 
functions (bottom-left panel). Then, sensory acceleration without decisional 
bias (top-right panel, grayed) produces the same observable effect as deci-
sional bias without sensory acceleration (bottom-left panel, grayed). Given 
that single-presentation methods confound sensory and decisional processes 
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Figure ��.8 Single-presentation methods cannot distinguish decisional bias from sensory 
acceleration. The grayed panels in the 2×2 array depict identical psychometric 
functions that can result either from pure sensory acceleration (top-right panel) 
or from pure decisional bias (bottom-left panel). Layout as in Fig. 12.4.

and do not allow telling apart their respective influences, the prior-entry (or 
temporal-recalibration) hypotheses cannot be tested with them.

Methodological confounds that preclude testing for prior entry with single-
presentation methods were pointed out by Spence and Parise (2010) but ways 
around this problem have not been devised thus far. We will show here that 
a dual-presentation method and a ternary response format allow separating 
out sensory and decisional contributions to observed performance (see also 
García-Pérez & Alcalá-Quintana, 2013).

Before discussing this issue, we should note that single-presentation meth-
ods are still useful when SOAs are delivered with stimuli that can be reason-
ably assumed to render identical arrival-time distributions. In these conditions,  
λr = λt = λ and τt = τr so that τ = 0. Because the confound affects parameters 
τ, δ1, and δ2, the constraint τ = 0 resolves it and allows estimating decisional 
bias. García-Pérez and Alcalá-Quintana (2015a, 2015b) illustrated these par-
ticular circumstances in several empirical cases in which test and reference 
stimuli were identical visual patterns presented at different spatial locations 
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on a monitor, and once it had been established that position in the visual field 
does not alter the processing speed of a visual stimulus. These conditions hold 
also for the SJ4 data presented in the previous subsection, something that al-
lows an analysis without the constraint δ2 = −δ3 and permits an assessment 
of decisional bias. Presentation of the results of this alternative approach to 
fitting the above SJ4 data is deferred to the Online Material.

Nevertheless, this approach is inappropriate in prior entry studies in which 
the issue under investigation is whether attentional manipulations alter the 
distribution of arrival times and, thus, whether λr ≠ λt and/or τt ≠ τr even when 
test and reference stimuli are otherwise identical. In these conditions, separat-
ing out decisional and timing influences on observed performance is crucial. 
This can only be accomplished using a dual-presentation method coupled 
with a ternary response format. In this variant of the task, each trial presents 
two SOAs sequentially and the observer reports whether presentations were 
subjectively more synchronous in the first interval, in the second, or they were 
instead indistinguishable as to (a)synchrony. One of the intervals in each trial 
displays the standard SOA, which is not necessarily synchronous but has the 
same magnitude in all trials;2 the other interval displays a test SOA whose 
magnitude varies across trials. Standard and test SOAs are also presented in 
both possible orders across trials. The observer’s responses are then tallied to 
compute the proportion of trials in which each judgment (test more synchro-
nous, standard more synchronous, or standard and test indistinguishable as 
to synchrony) was reported under each order of presentation (test SOA pre-
sented first or test SOA presented second) at each test SOA.

The model for this dual-presentation task is a straightforward extension of 
the model described earlier for single-presentation tasks, although derivation 
of model psychometric functions is somewhat more elaborate. A manuscript 
in preparation will present such extension in detail, including an empirical test 
of the validity of the model. Here we will only describe the model succinct-
ly with an eye to illustrating how this task solves the inescapable problems 
of single-presentation methods and their inappropriateness for testing the 
prior-entry or temporal-recalibration hypotheses. In a nutshell, the model as-
sumes that observers gather arrival-time differences D1 and D2 in each  interval 
on each trial, whose individual distributions are given by Eq. 5 above for the 

2 Sets of trials involving several standard SOAs can be interwoven in a session but the subse-
quent analysis is conducted separately for each standard SOA, just as if each of them had 
been used in a separate session (e.g., Allan & Kristofferson, 1974; Pastore & Farrington, 1996; 
Yarrow et al., 2016).
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SOA used in each interval. Because observers are asked to report the interval 
in which presentation was subjectively more synchronous, the decision vari-
able is the difference of perceived offsets (unsigned perceived asynchronies)  
D = |D2| − |D1|, whose probability distribution exists in closed form. The decision 
space also includes three regions so that the observer judges the first (alter-
natively, second) interval to be more synchronous when D > δ2 (alternatively,  
D < δ1) and judges both intervals to be indistinguishably (a)synchronous when 
δ1 ≤ D ≤ δ2. Leaving aside the extension that incorporates parameters for re-
sponse errors, model psychometric functions for this task are shown in Fig. 12.9 
under the same scenarios used in Fig. 12.8 to illustrate the inappropriateness of 
single-presentation methods.

It is immediately obvious by visual inspection of the 2×2 array of panels at 
the bottom right of Fig. 12.9 that lack of decisional bias results in psychometric 
functions that superimpose for both orders of presentation of test and standard 
SOA in each trial (middle row) whereas decisional bias renders  psychometric 
functions that differ across presentation orders (bottom row). In either case, 
sensory acceleration (right column) produces psychometric functions that are 
rigidly shifted laterally compared to their location in the absence of sensory 
acceleration (middle column), regardless of whether or not the baseline con-
dition involves decisional bias. In other words, sensory acceleration and deci-
sional bias produce distinct effects on the observed psychometric functions, 
and these effects are captured by model parameters.

Then, the dual-presentation task with a ternary response format allows 
separating out timing and decisional processes while entirely removing the 
response bias that might also contaminate the data if observers were forced 
to report one of the intervals as more synchronous when they actually judge 
them to be equally (a)synchronous. This task thus allows estimating all the 
relevant parameters (λr, λt, τ, δ1, and δ2) that are needed to express observed 
performance in terms of timing and decisional processes. Hence, prior-entry 
and temporal-recalibration hypotheses can be tested with this task. We should 
stress that timing and decisional components cannot be separated out if a bi-
nary response format is used instead (i.e., if the option to report indistinguish-
ability is not given) or if responses are aggregated across orders of presentation 
of standard and test SOA.

6 Conclusion

Research on timing requires collecting data on observers’ performance. Such 
data inform of the speed of sensory processing for each of the stimuli used to 
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Figure ��.9 Distinguishing decisional bias from sensory acceleration with a dual- 
presentation task and a ternary response format. Without loss of generality, 
the standard SOA is assumed to be a synchronous presentation of visual and 
auditory stimuli whose individual arrival-time distributions are indicated in the 
top row in the baseline (normal) condition and under an experimental manipu-
lation that speeds up processing of the visual stimulus. The left column shows the 
decision space with boundaries that incorporate decisional bias (bottom row) 
or lack thereof (middle row). The 2×2 array of panels at the bottom right shows 
that sensory acceleration and decisional bias have distinguishable effects on the 
observed psychometric functions.

deliver SOAs under the selected experimental conditions, but observed per-
formance is also modulated by decisional and response processes. An analy-
sis that separates the contribution of the three components of performance 
is needed for a proper assessment of timing processes. We have shown that 
a model-based analysis is useful for this purpose and that classical measures 
of observed performance (PSSs, JNDs, or SRs) mix up these contributions 
misleadingly.

We have also shown that the single-presentation tasks most often used 
in empirical studies (SJ2, SJ3, and TOJ tasks) confound timing and decision-
al components, lending them unsuitable for studies in which differences in 
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 timing processes across conditions are under scrutiny (e.g., prior entry) or for 
studies in which differences in decisional processes also across conditions are 
under scrutiny (e.g., temporal recalibration).

The above does not mean that single-presentation tasks are useless. In a 
number of situations, research interests focus on model parameters not af-
fected by the confound (e.g., the variability of arrival latencies),  experimental 
 conditions constrain performance in a way that the confound is bypassed (e.g., 
test and reference stimuli are identical in all respects), or interest lies in qual-
itative aspects (e.g., whether the presence of U judgments warrants the use 
of an SJ4 task). In such cases, single-presentation tasks are useful, but model- 
based analyses are still needed to extract all the information that the data 
can provide. The software included in the Online Material accompanying this 
chapter (for model-based analyses of SJ4 data) supplements the software in 
Alcalá-Quintana and García-Pérez (2013; for model-based analysis of SJ2, SJ3, 
and TOJ data) to facilitate this task.
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chapter �3

Collecting and Interpreting Judgments about 
Perceived Simultaneity: A Model-Fitting Tutorial

Kielan Yarrow

1 Introduction

In this chapter, I consider the simultaneity judgement (sj) as a measure of the 
relative time perceived between two events, outlining the basic experimental 
design, the kind of data it generates, and how these data can be interpreted 
via the parameters of fitted models. After a brief overview of data collection 
methods, I outline the steps involved in both generating model predictions for 
plausible observer models and determining a single set of best-fitting model 
parameters, which maximise the likelihood that the model produced the data. 
I do so in a way intended to make sense to the competent programmer with 
limited formal mathematical expertise, making reference to accompanying 
Matlab code (see book’s GitHub repository). Although I will focus on fitting 
simple detection-theoretic models, I also consider alternative approaches to 
treating sj data, and briefly review the ways in which more complex models 
can be conceived and tested. I subsequently extend my discussion to consider 
a ternary choice, where participants can indicate either simultaneity or one of 
two possible orders, and also a novel task requiring a choice about which of 
two intervals contains the most simultaneous stimulus pair.

2 Chapter Architecture

In the following sections, I will discuss various abstract concepts that are often 
made concrete within a set of accompanying Matlab code (see book’s GitHub 
repository). To facilitate understanding, I have adopted a cross referencing 
scheme. At various points in the chapter, I include footnotes to code references, 
which are shown within triangular brackets, e.g., <SimultaneityNoisyCriteria 
112>. These indicate that the concept that is being discussed has been imple-
mented in a Matlab function with that name. The number is the line number 
at which the relevant code begins. Given that I am not a mathematician, and 
that this chapter is intended to be comprehensible to non-mathematicians, 
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I have generally avoided including formal equations in the text, except where 
they seem particularly helpful to assist understanding (or with implementing 
the ideas that are being discussed).

3 Judging Relative Time

As timing researchers, we are often interested in how observers perceive the 
timing of events. For example, we might wish to assess how the timing be-
tween a brief sound and a flash of light is experienced. There are many ways 
in which we might operationalise this assessment, but a classic approach is 
to provide multiple trials containing different relative timings between events 
(hereafter referred to as stimulus onset asynchronies or soas) and have our ob-
server make a simple judgement on each trial. The temporal order judgement 
(toj; e.g., “which came first”) was popular for many years (e.g., Sternberg & 
Knoll, 1973) but recently the simultaneity or sj (e.g., “were they simultane-
ous?”) has become increasingly popular. This may reflect the comparative ease 
with which observers perform these two tasks: Participants tend to say that 
the toj task is harder than the sj task (Love, Petrini, Cheng, & Pollick, 2013) 
and also make more errors than one would predict in the toj based only on 
estimates of sensory precision derived from other timing tasks (García-Pérez &  
Alcalá-Quintana, 2012a; Yarrow et al., 2016). Here, I will primarily address the 
sj task in considerable detail, but also briefly introduce some variant tasks to-
wards the end of the chapter.

4 The Simultaneity Judgement Experiment

The basic sj design is simple: Present observers with pairs of stimuli on each 
trial, specifying the soa between them. Across the experiment, present many 
different soas in a random order, and see how often participants judge each 
soa to be simultaneous. However, we will need to define the range of soas 
that will be used, and how often each is presented. A classic approach is to 
use the method of constant stimuli, in which each possible soa is presented 
an equal number of times across the experiment. In this case, we must still 
select the set of soas to test. Given a finite number of trials, there is an inevi-
table trade-off between the resolution implied by the step sizes we use and the 
range of soas we wish to cover. In the sj task, it is important to adequately 
sample both of the transition points from perceived succession to perceived 
simultaneity. For example, in an audiovisual (av) task, we need to capture the 
boundary where observers change from perceiving A then V (i.e., perceived 
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succession) to perceiving synchrony, and also the boundary where they change 
from perceiving synchrony to perceiving V then A (i.e., back to perceived suc-
cession once again, but now in the opposite direction). For many participants, 
this implies sampling a rather wide range of soas. One potential problem is 
that in order to capture observers who report synchrony over a wide range, we 
end up sampling many times at extreme soas, which may appear trivially non-
synchronous to experienced observers.

For this reason, some researchers prefer to use adaptive methods to select 
the soa on each trial. For the sj, these approaches generally attempt to place 
most trials near to the transition boundaries (from succession to synchrony 
and back again) while still adequately sampling the regions lying both between 
them and at the extremes. For example, Yarrow et al. (2013) used an approach 
loosely based on Rosenberger and Grill (1997) where the distribution from 
which trials are selected starts off being uniform, but is modified after each 
decision based on how the participant responds. The aim is to end up with a 
bimodal distribution that peaks over both transition boundaries. A similar goal 
can also be achieved in various ways via modified and/or interleaved staircases 
(e.g., Arnold, Petrie, Gallagher, & Yarrow, 2015; García-Pérez, 2014).

No approach is perfect. The method of constant stimuli can be wasteful, and 
is likely to establish a Bayesian prior that might bias perception towards the 
centre of the tested range (Miyazaki, Yamamoto, Uchida, & Kitazawa, 2006).1 
Some adaptive approaches imply a statistical dependency between successive 
stimuli, which is not really desirable, and the distribution of soas is likely to be 
uneven, and also to vary between conditions, particularly where they induce 
different biases. Different researchers will weigh these concerns differently. 
Hence, the only advice on which I suspect all researchers in this area would 
agree is that some pilot work with the population of interest is crucial before 
finalising the method for selecting soas across trials.

A further issue that should be considered closely before formal data col-
lection begins is the accuracy and precision with which the desired soas are 
being generated by the lab hardware and software. Achieving precise stimu-
lus timing is generally not trivial despite the assumed capacities of modern 
computers. This chapter is not the place to make a detailed comparison of dif-
ferent rigs and their technical limitations. Instead, I offer some brief advice: 
Check the timing of your stimuli over a fairly large number of trials using an 
 oscilloscope or some similar method, and never assume that your computer is 
simply doing what you think you told it to do.

1 This will also be true of adaptive methods, but here the centre of the test range is more likely 
to conform to a participant’s natural bias.
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5 Interpreting sj Data with Observer Models

Having run an experiment as outlined above, on each trial you will typically 
have: 1) an soa and 2) a decision (i.e., synchronous or not). Such trial-by-trial 
data from sjs are commonly summarised as the proportion of times each soa 
was judged synchronous.2 You will then be confronted by a set of data similar 
to those plotted in Figure 13.1. These data form the basis of a psychometric 
function, plotting performance (proportion judged synchronous) against the 
tested soa. Often, it is helpful to further summarise the data, for example to 
produce one or more dependent variables for inferential statistical analyses. 
How should this be achieved? Although I will briefly consider some alterna-
tives in Section 9 of this manuscript, the approach I focus on in the majority 
of this chapter is the use of parametric observer models to summarise sj data.

We could summarise data with any mathematical function that looks about 
right, and indeed this is the approach that has often been taken in character-
izing sj data, with the function of choice being a (truncated and/or vertically 
rescaled) Gaussian (Stone et al., 2002; Vroomen & Keetels, 2010). However, this 
arbitrariness comes at a cost. Firstly, if the function has not been derived from 
any meaningful observer model, there is little reason to believe that it will ad-
equately summarise data in a wide range of situations. Secondly, and relatedly, 
the parameters of the model will have only a superficial descriptive mean-
ing. By contrast, the parameters of an observer model have meanings that are 
clearly defined, being tied to the latent processes that have been hypothesised 
to generate the observations. Furthermore, they can be compared with the 
same parameters derived when similar observer models are defined and fitted 
to other tasks (such as the toj).

What do I mean by an “observer model”? In short, I mean a model in which 
a series of well-defined (but often quite abstract) processing steps have been 
hypothesised to intervene between perception and response. Here, I will be 
working with fairly simple observer models. They are based on the assumption 
that each of the two sensory signals to be compared must pass along a neural 

2 This kind of summary is less useful where each soa is only sampled once, as sometimes 
occurs in situations where soas have a random component. An example would be experi-
ments comparing the time of an action to an event (where the event is presented around the 
time that the action is expected to occur, but this cannot be known for certain in advance; 
e.g., Yarrow, Sverdrup-Stueland, Roseboom, & Arnold, 2013). Another example would be data 
generated using an adaptive procedure without a fixed step size. Note that although such 
data will be more difficult to graph, the model-fitting procedures outlined in this chapter will 
still work perfectly well.
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Figure �3.� Example sj data. Each row shows data collected under different instructions 
(see main text). Left column: Data alone. Middle column: Data along with the 
predictions of a best-fitting three-parameter observer model. Right column: Data 
fitted with a four-parameter observer model, allowing asymmetry (i.e., a varied 
slope on each side of the psychometric function). Vertical error bars show 95% 
binomial confidence intervals on the data. Horizontal (grey) error bars surround 
estimates of two model parameters, and show 95% bootstrap confidence inter-
vals. These two parameters represent the transition points from judgements of 
simultaneity to judgements of succession (or vice versa).
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pathway to a decision hub. The latency with which they do so is considered 
to be a random variable (i.e., to vary from trial to trial about some mean value 
according to a known distribution). The decision hub receives both signals, 
and, thus, has access to the subjective difference in arrival times between them 
(Δt), which is corrupted by their latency noise. Hence, Δt is also a random vari-
able, with a distribution that depends on its two contributors. If they are each 
distributed in a Normal/Gaussian way, Δt is also Gaussian, with a variance 
equal to the sum of the two contributing signals’ variances. The observer then 
interprets Δt on each trial by placing decision criteria, typically one below and 
one above true synchrony, so that values that fall between them can be judged 
synchronous. These ideas are illustrated schematically in Figure 13.2. If, after 
reviewing it, you find that you are struggling with these concepts, I would sug-
gest that you find out about the basics of signal detection theory, for example 
in Macmillan and Creelman (2005), before studying this chapter again.

If the two decision criteria that an observer uses to define simultaneity can 
be held perfectly constant across trials, this model predicts a psychometric 
function that is the difference of two cumulative Gaussians, each having the 
same variance but a different mean (Schneider & Bavelier, 2003). Hence both 
cumulative Gaussians can be described using just three parameters: 

( ) ( )“ ”
High LowP simultaneous C , SOA, C , SOA,=Φ σ −Φ σ 3 (1)

where Φ is the normal cumulative density function. The two means represent 
the positions of the decision criteria (CLow and CHigh) on the soa axis, and the 
single standard deviation (σ) shared by both represents the variability in Δt.

What about if we doubt that our observer can hold their decision criteria 
perfectly constant across trials? If the positions of the two criteria are addi-
tionally considered to be Gaussian random variables (Yarrow, Jahn, Durant, & 
Arnold, 2011), the psychometric function becomes the difference of two cumu-
lative Gaussians with different means and variances: 

( ) ( )High High Low LowP “sim.”  C ,  SOA,    C ,  SOA,  = Φ σ − Φ σ 4 (2)

3 <SimultaneityNoisyCriteria 12–22>.
4 <SimultaneityNoisyCriteria 23–33>. Note that this formula is an approximation and will 

break down if the criteria are close together and one is noisier than the other (because the 
cumulative Gaussians will overlap, producing negative predictions for judgements of simul-
taneity). One possible fix is to implement a simulation in such cases and assume that when 
noise in the criteria makes their order illogical, observers default to just using the less noisy 
criterion <SimultaneityNoisyCriteria 46>.
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Hence, four parameters are needed to describe the predictions from this 
model. The means retain the same interpretation as before, corresponding to 
the mean positions of the decision criteria for synchrony, while the variance 
of each cumulative Gaussian now represents the sum of two sources of vari-
ability. Both cumulative Gaussians contain the variance in Δt, but each also 
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Figure �3.� Schematic of the four-parameter observer model outlined in the main text. A. 
Each soa is presented many times. Each trial yields a noisy internal response  
(Δt, the subjective soa). Hence the relationship between objective and subjective 
soas is depicted as linear (and in this case unbiased) but shading is used to de-
note the likelihood of each Δt value (darker shading denoting higher probabili-
ties). Cutting vertically through this function for any given objective soa yields 
the Gaussian distribution of resulting Δt values across trials. B. This probability 
density function (pdf) is shown for a −50 ms soa. An observer will judge the trial 
synchronous when Δt falls between two decision criteria (shaded region between 
white dashed lines). The area under a pdf (to the left of some point) is given by a 
cumulative density function, so the shaded region is estimated as the difference of 
two cumulative Gaussians, one integrating all the way to the rightmost criterion, 
the other integrating only to the leftmost one. Shading around the criteria de-
notes additional criterion noise; criterion likelihood is highest where the shading 
is darkest. C. Resulting psychometric function (asymmetrical, due to differential 
criterion noise) with the point defined by the shaded region in Part B highlighted. 
Other points on the function are similarly obtained by integrating the region 
between the two criteria that is obtained at different soas.

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



Yarrow30�

<UN>

uniquely  contains the variance in the placement of the corresponding criteri-
on. To expand slightly: Psychologically, we are now envisaging several contrib-
uting sources of noise – from variability in signal transmission times, and from 
 variability in the placement of two decision boundaries. However, when we 
implement the model mathematically it becomes apparent that these psycho-
logical constructs are degenerate should we attempt to have a free parameter 
for each one.5 To make it possible to recover model parameters (as outlined 
 later, in Section 6) we must create composite parameters (σLow and σHigh), 
which can vary independently from each other, and from all other model pa-
rameters, but represent a somewhat complex combination of different theo-
retical sources of sensory/decision noise.

These kinds of models have been developed by several authors for differ-
ent tasks (Allan, 1975; Baron, 1969; Gibbon & Rutschmann, 1969; Schneider & 
Bavelier, 2003; Sternberg & Knoll, 1973; Ulrich, 1987; Yarrow et al., 2011). It is 
worth noting that the exact processes that lead Δt to be a Gaussian random 
variable (i.e., independent latency noise in the two signals) can be incorrect 
without invalidating this whole approach. Consider that this kind of model 
also leads to the prediction of a (single) cumulative Gaussian psychometric 
function for tojs. However, the cumulative Gaussian function is actually used 
very widely in psychophysics (whenever a judgement is made that effectively 
divides a continuous decision variable into two halves). This is because all that 
is really being assumed for this fit to be sensible is that the internal response 
that informs the decision (here Δt, but in other applications contrast, intensity, 
orientation, or whatever) has in some way accumulated Gaussian noise. The 
central limit theorem6 of classical probability theory makes this a fairly ap-
pealing conjecture for many sensory domains, regardless of the exact process-
ing steps that might precede a sensory judgement.

So far, I have described an observer model with two variants. The first, with 
three parameters, produces a symmetric psychometric function for sjs. The 
second uses four parameters and can additionally capture an asymmetry in the 
data. I will comment on formal methods for model selection in a later section. 
For now, I want to discuss the meaning of the model parameters, partly just to 
help make the models more interpretable, and partly in order to clarify what I 

5 By “degenerate”, I mean that such parameters could trade off perfectly with one another, such 
that different combinations lead to the exact same model prediction. This creates a problem 
in model fitting known as non-identifiability.

6 If you take a large number of random variables and add them together, the distribution of 
their sum will be Gaussian (even if the contributing variables are not).
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think are some misconceptions that have arisen out of the common decision 
to fit an arbitrary function (the Gaussian) to sj data.

To get us going, consider the first column of Figure 13.1. These data come 
from five blocks (of 195 trials each) of an sj experiment, performed by a nov-
ice observer (using the method of constant stimuli, and evaluating synchrony 
between an led flash and a 1000 Hz beep, both 10 ms in duration). In the first 
block, they were simply told to report simultaneity if that is what they per-
ceived. In the second, third and fourth blocks, they were instead told to try 
and successfully guess the stimuli that were truly simultaneous, but given a 
maximum number of attempts (7, 5, and 3 in every set of 13 trials) on which 
they could make use of the “simultaneous” response option. In the fifth block, 
the original (standard) simultaneity instruction was repeated.

What effect did these altered instructions have on the psychometric func-
tion? When unconstrained, this participant, like many others I have tested, 
made extensive use of the synchronous response, so that they reported syn-
chrony almost 100% of the time across a range of soas. If these data were fit-
ted with a Gaussian, we might be tempted to interpret its standard deviation 
(or some linear transform of this value, such as the full width half height) as a 
measure of sensitivity to asynchrony. We might further be tempted to consider 
this parameter equivalent to the slope of the fitted function (or its inverse, the 
just noticeable difference) in a different task, like the toj.

However, consider what happens when instructions require the participant 
to be more conservative with their use of the synchronous response (Figure 13.1 
rows 2–4). If they were simply insensitive across the range of soas that they 
originally reported as synchronous (see row 1) they would still perceive syn-
chrony across this full range. Any constraint on the number of “synchronous” 
responses that could be made would yield a psychometric function with a flat 
plateau across this range, but with a ceiling at a proportion lower than 1.0 (be-
cause the limited responses would now have to be shared out at random across 
this region). This is not what occurs. Instead, the synchronous responses in-
creasingly cluster close to true synchrony. The observer model I have outlined 
in this chapter describes these patterns of data quite naturally, as the result of 
changing decision criteria. Initially, the participant adopts quite loose criteria 
regarding what is synchronous, but the instructions force them to adaptive-
ly tighten them up in response to task requirements.7 Fits are shown in the 

7 It is easy to envisage other situations that might alter a participant’s decision strategy, for 
example the speed with which they are expected to respond, or their beliefs about the 
 proportion of stimuli that are actually simultaneous.
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 middle column for the three-parameter observer model I outlined earlier. The 
first two model parameters capture the position of the decision criteria.

If the width of the sj function is a poor measure of sensitivity, what is a good 
measure? The answer is the slope of the function (on either side), which, under 
the three-parameter observer model, is determined directly by sensory noise 
in the Δt distribution. This measure remains rather similar down the rows of 
Figure 13.1, consistent with our expectation that a change in instructions has 
not somehow radically adjusted the participant’s levels of sensory precision. 
The σ parameter of the sj function, when implemented as I have described 
(as the difference of two cumulative Gaussians), is exactly equivalent to the 
σ parameter of a sigmoidal psychometric function applied to toj data (when 
considered as the prediction of the same model). Note that fitting an arbitrary 
Gaussian provides no such way of dissociating the width of the sj function 
from the steepness of the sj function. The practical importance of this limi-
tation is up for debate (it may, for example, be the case that slope and width 
of the sj function are typically highly correlated, perhaps because noisy ob-
servers tend to choose liberal criteria; c.f. Magnotti, Ma, & Beauchamp, 2013). 
However, conceptually this distinction seems a sensible one to maintain, being 
closely related to the distinction between d-prime (d’) and c made famous in 
classical signal detection theory (Green & Swets, 1966).

I have also discussed a four-parameter model, which is fitted in the right-
hand column of Figure 13.1. Here, the asymmetry in the function arises from 
unequal variance in the placement of the two decision criteria (low and high) 
over the trials of the experiment. These sources of variance would sum with 
sensory noise in the Δt distribution, uniquely at each decision boundary. If 
we  believe that criterion noise may be present, it complicates our interpreta-
tion slightly, because we can never fully separate criterion noise from sensory 
noise in order to determine the magnitude of either one. All we can do is place 
an upper limit on sensory noise (being the smaller of the σ2 estimates associ-
ated with the two sides of the sj function). Note that this conflation of sensory 
noise and criterion noise applies equally to the interpretation of sigmoidal 
functions in toj and other (non-temporal) tasks: If both kinds of noise are as-
sumed to be Gaussian, only their sum can be estimated from a psychometric 
function.

Before I conclude this section, it is important to consider a measure that is 
often derived in timing studies which I have not yet touched upon: The point 
of subjective simultaneity or pss. Classically, this measure is estimated from 
toj tasks, being the soa at which the two order responses are equally likely 
(implying maximum uncertainty about stimulus order). An analysis couched 
in terms of the kinds of observer model I have described here illustrates that 
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this soa represents the combination of a sensory bias (for example, if stimuli 
from one modality in an av task must travel a shorter neural pathway than 
those from the other to reach the decision hub) and a decision bias (in placing 
a criterion to demarcate the two order responses; Sternberg & Knoll, 1973).

In the sj task, a similar ambiguity is present (Yarrow et al., 2011). If a sen-
sory bias exists, it seems plausible that the two criteria demarcating synchrony 
from asynchrony would simply be placed at equal distances from “subjective 
zero.” In that case, we can simply average them to recover a single pss with 
a purely sensory interpretation. Note, however, that such an “equal distance” 
assumption may not be applicable in many situations, particularly if the two 
stimuli are substantially different from one another. For example, two stimuli 
may persist to different extents within the brain, and this might influence how 
decision criteria are set (e.g., “I will call them simultaneous if I experience no 
gap between them”). A weaker claim would be that the pss is very likely to 
lie somewhere between the two criteria. My personal preference is generally to 
report the two criteria, which may in any case provide greater insights about 
changes across conditions than a single inferred pss (Yarrow et al., 2013; Yar-
row et al., 2011). However, reviewers often request (quite reasonably) that the 
pss also be reported for easier comparison with the previous literature. In this 
case, I would suggest that averaging the criteria is a good compromise.

6 Fitting Models to sj Data

So far, I have alluded to the general notion of fitting observer models to sj data 
in order to derive meaningful parameters, and described two variants of what 
I believe to be a sensible observer model for this purpose. If you are happy 
that the observer models I have suggested serve your experimental needs, then 
you may already have most of what you need from this chapter, because the 
Matlab code to fit these models is available.8 With an intuitive understand-
ing of the models, you can fit them and interpret their parameters (rather like 
having only an intuition about the maths underlying anova is more than suf-
ficient to apply this statistical tool). However, it is possible that you may want 
to fit variants of the models I have outlined (e.g., Yarrow, Minaei, & Arnold, 
2015) or other models entirely, or that you are simply inquisitive about how 
models are fitted to data and wish for a deeper understanding of this process.  
In this section, I will provide a whistle-stop tour. Realistically, I can only touch 
on the topic of model fitting. If you would like to know more, I would highly 

8 <SimultaneityDiffCumGaussMultistart> and <SimultaneityNoisyCriteriaMultistart>.
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recommend that you take a look at Lewandowsky and Farrell (2010), an ex-
cellent and readable book on this topic from which much of what I will say 
has been gleaned. The Matlab functions provided as part of this chapter owe 
a large debt to the structure that Lewandowsky and Farrell introduce and the 
examples that they provide in their code snippets. Other very useful sources 
for what follows are the now classic papers by Wichmann and Hill (2001a, b) 
on fitting sigmoidal psychometric functions, and Myung’s (2003) short tutorial 
on maximum likelihood estimation.

6.1 Introduction to Model Fitting: Regression
If you are attempting a chapter like this, I am going to assume that you are 
somewhat familiar with simple linear regression, so I will start there. You will 
recall that regression fits a straight-line model with two (or more) parameters 
to data. The parameters, for simple regression, are the slope (s) and intercept 
(c) of the line defined by the function y = sx + c. I am going to begin with an 
even simpler model, where c is fixed to zero. Hence, the model I am working 
with has just one free parameter (s) and the model’s predictions are captured 
in the equation y = sx.

Data for a regression-style problem come in the form of a vector of values 
of x (x) and the associated vector of values of y (y) so that x1 … n and y1 … n are 
matched pairs, for example the height and weight of a set of n participants. At 
this point I have a set of data and a parametric model with predictions defined 
by an equation. How should I go about finding the value of my parameter s, 
which maximises the fit of the model to the data? For this, I need to consider 
something called the discrepancy function. In the case of regression, the dis-
crepancy function is based on summed squared error. If I pick a value of s, I 
can use my model equation y = sx to find a prediction (about y) for each value 
of x in my data set. Then I can look at the actual value of y associated with 
each value of x in the dataset. Finally, I can subtract each predicted y from the 
corresponding y in the data, square this difference, and sum these values up to 
produce the summed squared error for the model (associated specifically with 
the particular value of s that I have just picked and tested). If I were to repeat 
this process with many values of s (for example stepping up from s = 0 to s = 2 
in small increments) I could save each error value and plot out a discrepancy 
function, showing how discrepant the model predictions are from the data 
for different values of s. What I want to find is the minimum of this function, 
 because that will be the value of s that provides the best fit of model to data. 
These ideas are illustrated in Figure 13.3.

For my reduced regression problem (or indeed for much more realistic and 
complex linear regression problems) I wouldn’t actually bother to generate a 
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discrepancy function in this tedious iterative manner. For the toy example, I 
could just about crunch through the necessary maths, using calculus, in or-
der to reach an analytic solution (by first deriving a formal expression for the 
 discrepancy function, then differentiating it to find its slope, and finally setting 
this derivative to zero to find the minimum). For a more realistic regression 
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Figure �3.3 Schematic of process for the generation of a discrepancy function. Here, a toy 
regression problem is illustrated. A. Three data points are shown, along with the 
equation that captures the model’s predictions. B. The model’s parameter, s, is 
varied. For each value of s, error is determined as the distance between the model 
prediction and each data point. C. To provide a metric of model fit, errors for each 
data point are summed and squared. For example, when s = 0.5, errors are 1.5, 
0, and 1.5 ( for the three data points), so squared errors are 2.25, 0 and 2.25, and 
the sum of squared error (sse) = 4.5. Calculating sse for all values of the model 
parameter s allows us to plot a discrepancy function. The best-fitting model 
parameter is the value of s that minimises this function.
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problem, I could thank my lucky stars that competent mathematicians have 
already derived analytic solutions, and simply plug my data into those to find 
the best-fitting parameters in a single step. However, in the case of the sj mod-
els that are our main interest here, we will actually end up doing something 
nearly as crude as the iterative search I have outlined above, because finding 
an expression for the discrepancy function in terms of the model parameters 
is not as trivial as just looking it up in a statistics textbook. Before getting to 
that, however, we need to touch on another important concept that is required 
when we move to fitting sjs: Maximum likelihood estimation.

6.2 Maximum Likelihood Estimation and the Binomial Data Model
Summed squared error (or the equivalent mean squared error) is an intuitive 
measure of model fit. We can clearly visualise how a model fits poorly if its 
predictions fall at a greater distance from the data. Furthermore, the squar-
ing  operation seems a sensible way to punish both positive and negative 
“ prediction errors” (rather than having them cancel each other out when we 
sum over data points). However, this goodness-of-fit statistic is not generally 
applicable. Rather, it is a special case of a more generally applicable metric 
(with summed squared error giving the same answer when data are distrib-
uted normally and with equal variance at each level of prediction).9 In general, 
to find best-fitting parameters, what we want to do is to find model param-
eters, which maximise the likelihood that the model at hand generated the data 
(known as maximum likelihood estimation or mle).

Recall that for linear regression, we attempted to find parameters that mi-
nimised the summed squared error. In order to do so, we first had to be able 
to measure the summed squared error obtained with a particular parameter 
value. Analogously, in order to find a fit that maximises likelihood, we first 
need to able to measure the likelihood that a model generated our data given 
particular parameter values. With regression, we broke this process down by 
measuring error at each data point (and then squaring and summing them). 
With mle, we can also begin at the level of a single data point.

In fact, we will begin by considering a single data point and a model with 
a single parameter. In doing so, we are (almost inadvertently) introducing an 
important concept in mle fitting – the data model. The data model is our best 
guess about the statistical process that makes our data noisy. In the case of 
regression, the data model is Gaussian. We assume that our measurements 
are being corrupted by Gaussian noise. However, for synchrony judgements 
this would be the wrong data model. In an sj experiment, the observer can 

9 Which you will probably recognise as one of the assumptions for linear regression.
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only select one of two options on any given trial. The observer model, which I 
described earlier generates predictions about the probability with which they 
will say “simultaneous” at each soa. Hence, at each soa, our experiment can be 
considered a Bernoulli process (like repeatedly flipping a coin, with a  particular 
probability of coming up heads). When you sum the number of times one or 
other outcome is obtained from a Bernoulli process across a set number of 
 trials, you get a binomial distribution. Hence, for an sj experiment, at each soa 
we expect our data to follow a binomial distribution, with a  probability param-
eter that can be predicted by our observer model. For binomial data (denoted 
X here) the probability of getting exactly k successes (e.g. heads, or “synchro-
nous” decisions) in n trials with a probability of success of p is: 

( ) ( )1 − 
= = − 

 

n kk
n

p X k p p
k

10
 (3)

where: 

( )
!

! !
 

=  − 

n n
k k n k

 (4)

Now we are ready to appreciate what it means to measure the likelihood that 
model a with parameter p generated data point X. Make model a a coin toss 
with parameter p = 0.5 (a fair coin). If data point X showed 7 heads out of  
n = 10, we can make a precise quantitative statement about how likely it is that 
this model generated those data. We do this by plugging the numbers into the 
formula for the binomial distribution above. The answer, as it happens, is 0.1172. 
If we adjusted the probability parameter p of our binomial distribution to 0.1, 
you will probably guess that the model with this parameter will not do such a 
good job of predicting our data, and indeed the calculation returns a value of 
only 0.00008. What this number is telling us is that given the data we observed, 
it is rather unlikely that it was generated from a binomial distribution with a 
probability parameter of 0.1. On the other hand, with a probability parameter 
of 0.7 (i.e. where the prediction looks very much like the data) we obtain a 
likelihood of 0.2668, because this combination of model and  parameter value 
is much more likely.

What I have just described is exactly what we need to do at each data point 
(corresponding to each tested soa) when we conduct an mle fit to sj data. 

10 <BinomialLikelihood 9>.
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We need to take the probability predicted by our model, and use it, along with 
the number of synchronous responses and the number of trials at that soa, to 
obtain the likelihood of obtaining those data given binomially distributed data 
with the predicted probability. However, we still need to scale this calculation 
up in two ways. Firstly, we need to make this assessment for all data points, as 
I outline next, in order to generate the likelihood that the model generated the 
complete data set. Secondly, we need to perform this whole evaluation repeat-
edly, for the sets of probability values predicted by our observer model as we 
change that model’s parameters. In this way, we can create a likelihood func-
tion that can be used as a discrepancy function. I outline that process in the 
next section.

How do we move from the likelihood that this predicted probability yielded 
this many synchronous judgements out of this many trials (i.e., a single pre-
diction and a single data point) to the likelihood that a full set of predicted 
 probabilities (one per soa) gave rise to a full set of data points? We need to 
perform the calculation at each data point and then multiply the obtained 
probabilities together (because the probability of several independent events 
all occurring is simply their product). However, there are practical reasons for 
doing this in a slightly different way, not least the fact that when you multi-
ply lots of probabilities together you soon end up with a very small number 
indeed, which can be tough for computers to represent. You may or may not 
recall that the logarithm of a product of one or more numbers equals the sum 
of the  logarithm of each. Hence it is standard practice to calculate log prob-
abilities, and sum them across data points.11 We could then convert this back 
to a probability for the overall prediction, but given that we are looking for the 
maximum likelihood value, and log likelihood increases monotonically with 
increasing likelihood, it’s more typical to simply carry on working with the log-
likelihood values when we search for a best-fitting set of model parameters.12

11 E.g., <SimultaneityNoisyCriteriaWrapperForFMin 103–113>.
12 Actually, working with log likelihoods derived from the log of the equation for a binomial 

distribution imposes an unnecessary computational burden, because one of the terms 
(“N choose K”) depends only on the data, not on the model’s predictions, so will never 
vary as model parameters are changed. Hence it is not going to be relevant to finding the 
best-fitting parameters. In practice, we therefore tend to drop this term to speed things 
up. This is known as a “kernel” log-likelihood calculation. Using a kernel won’t matter at 
all if you limit yourself to making comparisons between models fitted to the same data 
using the same kernel, but it will matter if you want to interpret the absolute value of log 
likelihood (or likelihood) for the best-fitting parameters. Fortunately, we don’t generally 
need to do that. See e.g., <SimultaneityNoisyCriteriaWrapperForFmin 121–124>.
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Before I move on to this process, I want to briefly touch upon one impor-
tant feature of likelihood as a metric of goodness of fit: It is very sensitive to 
deviations from extreme predictions. What I mean by this is that if a model 
predicts probabilities of virtually zero or virtually 1 (as observer models often 
do) the likelihood of observing even a single trial at odds with this prediction 
is vanishingly small. What this means in practice is that a single lapse by an 
observer (say, pressing the wrong button by mistake) will have a dispropor-
tionately large effect on the resulting model fit (Wichmann & Hill, 2001a). For 
this reason, it is often worth considering incorporating a “lapse rate” parameter 
into our observer models. However, extra parameters are generally undesir-
able for various reasons, so a compromise position is to simply fix a small but 
reasonable lapse rate, which then adjusts model predictions at extreme soas. 
The code that accompanies this chapter incorporates a fixed lapse rate of 1%.13 
Essentially, model predictions are tweaked slightly to range from a very small 
probability of saying simultaneous to a very high probability of doing so with-
out ever getting as low as 0 or as high as 1.

6.3 Finding Best-Fitting Parameters
So far, I have tried to explain how we determine the (log) likelihood that a set 
of model predictions (i.e. predicted probabilities at each soa) generated a set 
of corresponding data. However, the probability of saying “synchronous” that 
an observer model predicts at each soa depends on the parameters fed into 
the model. What we want is the set of parameters that generates the set of 
predicted probabilities that maximise the likelihood that the model generated 
the data. One very labour-intensive way to go about finding them would be 
to iteratively modify each parameter at all levels of the other parameters, de-
termine log likelihood, and repeat to sample the entire parameter space. This 
approach, known as a grid search, is very similar to the one I outlined in my 
toy regression example. That model had just one parameter, and hence gener-
ated a discrepancy function that could be visualised in two dimensions (Figure 
13.3). If my observer model had just one parameter, I could do something very 
similar and generate a log-likelihood function amenable to a 2D plot. The main 
difference would be that I would be looking for the maximum, rather than the 
minimum, of this function.

Even with a single parameter, this approach is slow, particularly if you want 
a high-resolution search and have little idea about the range within which your 
best-fitting parameter lies. However, with two parameters, it is necessary to it-
erate through all reasonable values of one parameter at each reasonable value 

13 E.g., <SimultaneityNoisyCriteriaWrapperForFmin 93–94>.
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of the other (i.e., all combinations of two parameters). I then end up with a 
discrepancy surface that must be visualised in 3D. With more parameters, my 
discrepancy function becomes very hard to visualise and, more importantly, 
the number of points that must be searched in a grid search grows exponen-
tially. Hence a grid search is not very practical for the observer models I discuss 
here, with three and four parameters. Fortunately, many algorithms exist to 
help with searches of this kind. The most famous is the Nelder-Mead simplex 
search (Nelder & Mead, 1965).

The intuition for this approach is simple. Set a starting point (i.e. a reason-
able guess for each parameter) and establish error of fit. Then, test a few more 
points in the vicinity to find their errors. Apply some geometric rules to try 
and figure out the slope of the discrepancy surface in this small region. Then, 
crawl down this slope, testing new parameter combinations as you go and re- 
applying the rules, in order to move towards a minimum. For a log-likelihood 
search, the approach needs to be tweaked slightly before the simplex algo-
rithm will work, because we are seeking a maximum, not a minimum. Howev-
er, simply inverting the obtained log-likelihoods is sufficient.14 The set of rules 
embedded in the algorithm will then guide it to a best-fitting solution without 
having to sample the discrepancy surface exhaustively.15

You don’t really need to know any more than that to perform a simplex 
search, as functions to implement it are readily available. However, you might 
want to find out a bit more in order to appropriately set the various options 
that these functions let you vary. One important fact to bear in mind is that a 
simplex search may struggle when the discrepancy surface is not smooth and 
well behaved. In particular, if there are local minima that vary from the global 
minimum, the simplex is likely to home in on the local minimum in the re-
gion where it started to search and get stuck there. A good sanity check for 
any search procedure is to use the model that is to be fitted to generate some 
data (based on a known combination of parameters) and then see if the fitting 
procedure recovers the model parameters successfully when initiated from 
various different start positions. In my experience, simplex searches often fail 
in this regard. In an attempt to overcome this issue, the code associated with 
this chapter actually combines grid-search and simplex-search approaches, by 
initiating a separate simplex search from each parameter combination defined 
by a grid search.16

14 E.g., <SimultaneityNoisyCriteriaWrapperForFmin 126 & 47>.
15 E.g., <SimultaneityNoisyCriteriaWrapperForFmin 44>.
16 E.g., <SimultaneityNoisyCriteriaMultistart 138–182>.
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6.4 Confidence Intervals around Model Parameters
For comparisons involving groups of participants, recovering a set of best-
fitting parameters for each participant in each condition is usually sufficient, 
and the standard error can then be computed across the sample (usually as an 
implicit part of common approaches to statistical inference like anova). How-
ever, sometimes we wish to have an idea about how well parameters are being 
estimated for each participant. I will outline a couple of popular approaches.

Firstly, we can make use of a result from asymptotic statistical theory (i.e., 
theory that is true when our sample size in infinite), which (basically) tells us 
that there is a close relationship between the curvature of the log-likelihood 
surface at the point where we obtained the best-fitting parameters and the stan-
dard errors of those parameters. The intuition is that if changing a  parameter 
by just a little bit makes the fit a lot worse, the parameter is tightly constrained 
and probably well estimated. In this situation, the point of best fit effectively 
sits in a steep-sided hole on the (negative) log-likelihood discrepancy surface 
(hence curvature is high). Formally, the curvature of the log- likelihood surface 
is captured by something called the Hessian matrix (a matrix of second-order 
partial derivatives). We can’t work that out exactly without (at least) an ana-
lytic expression for the discrepancy function, and we don’t have one for the 
kinds of observer model I have described here. However, we can approximate 
the Hessian using numerical methods (by measuring changes in log-likelihood 
in the best-fitting region via a series of small steps). Having done so, the inverse 
of the Hessian provides a covariance matrix for the model’s best-fitting param-
eters, and the main diagonal values can, thus, be square rooted to estimate 
standard errors (which can then be straightforwardly converted to confidence 
intervals).17

It’s questionable whether results from asymptotic statistical theory are ac-
tually going to hold for psychophysics experiments with fairly low numbers of 
data points and trials (Wichmann & Hill, 2001a). Hence a popular alternative 
approach is to estimate confidence intervals via bootstrapping. Bootstrapping 
theory, described in detail in Efron and Tibshirani (1994), tells us (roughly) that 
if we resample from a data set repeatedly with replacement to generate a new 
“bootstrap” data set of the same size, calculate a statistic of interest, and then 
repeat many times, the resulting distribution will allow us to make inferences 
about the standard error of that statistic. In the case of sj  models, a reasonable 
approach is to resample the data (known as non-parametric bootstrapping), 
fit the model to each resample, and record the parameters on each of around 

17 E.g., <SimultaneityNoisyCriteriaWrapperForFmin 53–63> and <SimultaneityNoisyCrite-
riaMultistart 219–224>.
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1999 such iterations to form parameter distributions. If these  distributions are 
 symmetric, we can pretty much just read values straight out of them to form 
confidence intervals (e.g., the 50th and 1950th values out of 1999 will give us a 
roughly 95% confidence interval). If they are not, we must do something more 
complicated, with the best choice being the bias-corrected and  accelerated 
(BCa) approach. Because of the large number of fits that are required, 
 bootstrapping is fairly slow. If the experiment contains many trials, the BCa 
method makes it even slower (because it incorporates additional “jackknife” 
resampling, implying one further fitting iteration for almost every trial).18

The code accompanying this chapter offers options to generate  confidence 
intervals on fitted parameters. Confidence intervals sometimes imply 
 statistical inference, as for example when they fail to overlap some value and 
thus imply that our statistic differs significantly from that value. However, in 
sj  experiments we are more likely to want to ask a question such as whether 
a particular parameter differs between two conditions for a single observer. 
To answer this kind of question, you will need to modify or develop the code. 
If we take the example of whether parameters vary across conditions, my 
 recommendation would be to adopt a permutation test approach.

To do so, take the trials from both conditions and think of each trial as a 
card in a deck of cards. Making sure you keep each trial intact (i.e., without 
breaking the link between soas and responses) shuffle the trials and then deal 
them at random into two new piles, each representing a pseudo-condition. 
If your original conditions contained different numbers of trials, make sure 
the two pseudo-conditions match the size of the original conditions. For each 
pseudo-condition, perform a model fit. Now calculate the difference between 
model parameters in the two pseudo-conditions. This is the value you want to 
retain. Now repeat this whole process many times. What you are forming is a 
null distribution of the expected difference between model parameters that 
would occur just by chance. You can then compare the difference you actually 
obtained against this null distribution to generate a p value for your difference 
of interest.

7 Variants of sj Observer Models

In this chapter, I have presented two variants of a latency-based observer mod-
el applied to the sj task. Both assume that a single SOA will generate an inter-
nal response (Δt) that is a Gaussian random variable. Both assume a simple 

18 E.g., <SimultaneityNoisyCriteriaMultistart 225–386>. Note that Matlab has inbuilt func-
tions, which could have done most of this if you have the statistics toolbox extensions.
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 decision rule (“say synchronous if Δt > Clow and < CHigh”, where C indicates 
decision criteria). The more complex variant also allows the two criteria to vary 
from trial to trial as Gaussian random variables. There are many variants of 
this kind of model that could be envisaged, some of which are considered in 
Sternberg and Knoll (1973) and Ulrich (1987).

This kind of model is generally presented as a consequence of two sensory 
signals travelling along independent pathways to a decision centre, with sen-
sory noise reflecting variations in their latencies from trial to trial. However, 
the same predictions emerge if we assume the sensory noise accrues via some 
other process than latency variations (e.g., spike rate stochasticity) as long as 
the end result is a Gaussian Δt distribution. This is an attractive feature, be-
cause in fitting our data, we may not want to commit to anything more than 
the fairly defensible position that noisy representations are quite likely to be 
Gaussian (a hallmark of classical signal detection theory).

If we stick closer to the process model in which sensory noise is latency noise, 
it is reasonable to argue that the Gaussian assumption must be a  simplification. 
Latencies cannot be negative, so modelling them as Gaussian cannot be com-
pletely correct (although if the variance of the latency distribution is fairly 
small relative to the length of the neural pathway, the density below zero 
would be negligible). An alternative observer model based on the same basic 
principles has been developed by García-Pérez and Alcalá- Quintana (2012a, b, 
see also Chapter 12, this volume) who use exponential latency noise in place 
of Gaussian noise for each signal. The result is a four-parameter model, which 
can generate an asymmetric psychometric function for sjs and thus capture 
the same sorts of features as the four-parameter model presented here, but  
via the mechanism of an asymmetric Δt distribution (rather than criterion 
noise). The authors are happy to provide fitting code for their model, which 
can also be scaled up to include extra parameters that deal with keying errors. 
They have a chapter in this volume.

Their model yields two noise parameters (one for each signal) and two fur-
ther parameters, which seem distinct from the two criteria described here, 
but are in fact mathematically equivalent. García-Pérez and Alcalá-Quintana 
(2012a, b) describe τ, a processing delay parameter, basically what most re-
searchers think of as the pss, and δ, a resolution parameter, which defines the 
range of values judged synchronous. The two criteria I have described here 
map directly onto their parameters, being τ−δ and τ+δ (recall that I noted how 
a pss could be recovered by averaging the positions of the two criteria). The 
differences in terminology seem to be driven by different theoretical positions. 
Whereas I view the decision criteria as being malleable components of the 
decision process, García-Pérez and Alcalá-Quintana (2012a, b) seem at least 
partly committed to a form of “low-threshold” or “triggered-moment” model 
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where soas below some threshold cannot be recovered, so that an observer 
can only guess about order.19 However, either kind of model can easily be fitted 
and interpreted from either theoretical perspective.

8 Choosing between Observer Models and Rejecting Participants

Two further reasonable questions one might ask are: 1) could my observer 
model have generated these data? and 2) does another observer model de-
scribe the data better? Model comparison is a large and complex topic, so once 
again, what I have to say here should be treated as a brief introduction rather 
than a comprehensive summary.

Let’s begin by considering a metric I have not yet mentioned: Deviance. De-
viance (sometimes called G2) is a measure based on log likelihood, but which 
looks rather more like summed squared error, in that it is zero for a perfectly 
fitting model and large/positive for a poorly fitting model. Formally, deviance 
is two times the difference in log likelihood between the saturated model and 
the model with our current set of parameters. A saturated model is one that 
exactly predicts the data (which can always be accomplished by a model that 
has one parameter per data point). Hence it represents the situation with the 
 maximum possible log-likelihood when predicting this particular set of data. 
Deviance is closely related to a simpler calculation (–2 × log likelihood) that 
forms the basis of a couple of well-known metrics for model comparison (the 
Akaike information criterion, aic, and the Bayesian information criterion, 
bic) and indeed is occasionally defined this way. That’s because we are of-
ten only really interested in differences (in Deviance, or aic, or bic) between 
models, and the log-likelihood of the saturated model gets subtracted out in a 
comparison between two models (because it has contributed to the deviance 
in the same way for both) so calculating it is not necessary.

However, if you want to say something about the goodness of fit of a model 
without relating it to any other model, based on asymptotic statistical theory, 
you do need to calculate deviance properly. Asymptotically, it turns out that 
the deviance of a model fitted to data when that model actually generated those 
data follows a chi-square (χ2) distribution, with degrees of freedom equal to 
the number of data points minus the number of model parameters (note: for 

19 García-Pérez and Alcalá-Quintana’s commitment to this account is a little unclear, be-
cause they often let δ vary across experimental conditions, suggesting flexibility more 
akin to a criterion-based account. It may be that they believe a low-threshold exists, but 
that synchrony is often additionally reported beyond this hard limit.
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data points, think of the number of soas tested, not the number of trials!) 
Hence, if we want to know if our model might have generated our data, we 
could check the best-fitting deviance against such a distribution to see how 
improbable this is. Unfortunately, it seems that this asymptotic result may not 
always be accurate for data sets of a size typical in psychophysics experiments 
(Wichmann & Hill, 2001a).

For this reason, Wichmann and Hill (2001a) suggest using Monte-Carlo 
 simulation to assess whether a model is plausible. The idea is as follows. First, 
find the best-fitting set of model parameters. Second, create a set of data based 
on a simulation of the experiment in which that model generates the data. 
Third, find a fit to that data, and record the deviance.20 Fourth, repeat steps two 
and three many times to generate a distribution of deviances that you would 
expect when that model actually generated those sets of data. Finally, look to 
see where the deviance of your actual fit sits on this distribution in order to 
assess if the model is likely to have generated the data. This approach is not 
implemented in the code accompanying this chapter, but should be feasible 
for you to implement yourself if you are interested in assessing whether your 
data are under or over- dispersed relative to what would be expected. However, 
although certainly informative, I find it a rather high bar to set if you are, for 
example, deciding whether to use a model or to include a participant. After 
all, even the most ardent defender of a particular observer model would be 
unlikely to argue that it really represents a complete characterisation of the 
psychological processes that are being modelled. I think that a model fit can be 
informative even if the model is a simplification of absolutely everything that 
observers do in experiments. To paraphrase George Box: All models are wrong, 
but that doesn’t mean that they are not useful (Box, 1979).

With this in mind, my preference is to ask a slightly different question: 
Does this observer model seem to fit the data better than some other sim-
pler  account? This question is well aligned with what we generally do during 
statistical inference. For example, a simple (i.e., two parameter) regression is 
 generally considered significant if it explains the data significantly better than 
an even simpler one-parameter model (i.e., just the mean).

What can we say about the deviance statistic as model complexity in-
creases? Well, in general a complex model produces a better fit than a sim-
ple model whether it is correct or not, because more free parameters mean 
a greater  ability to describe patterns that are actually just random noise  

20 It doesn’t actually have to be deviance. Log likelihood, or -2 × log likelihood would be fine 
too.

- 978-90-04-28020-5
Downloaded from Brill.com04/14/2021 10:46:28AM

via free access



Yarrow3�8

<UN>

(at least for nested models).21 Hence, simply finding a decrease in deviance 
for a more complex model is not enough to show that it is better. We need 
to instead show that the decrease in deviance is greater than that expected 
by chance. Although the asymptotic result I outlined above for expectations 
about absolute deviance may be unreliable with psychophysical data sets, an-
other rather similar result may be more robust even when N is low. The change 
in deviance from a simpler to a more complex model also follows a χ2 distribu-
tion, but with degrees of freedom equal to the difference in free parameters 
between the models, as long as the models are nested.

The two observer models for sjs that I have discussed in this chapter are 
nested, so it’s possible to make a decision about whether to use the more com-
plicated one by comparing the deviances they each return. I have previously 
found the four parameter-variant to be justified for av data with led flashes 
and brief tones (Yarrow et al., 2011).

The code accompanying this chapter also includes an option, when fitting 
either of these models, to additionally fit a simpler model as a method of de-
ciding whether to retain a participant as part of a group-level analysis. The 
logic here is that if a participant is simply guessing rather than taking the ex-
periment seriously, they will be equally likely to say “synchronous” at any soa, 
which can be captured by a straight horizontal line (effectively a model with 
just one parameter: their overall tendency to use one of the two keys). However, 
in sj experiments we may also need to exclude participants who showed some 
ability to discriminate, but on only one side of the sj function, implying that 
we failed to sample extreme enough soas to capture both of their  transitions 
from synchrony to asynchrony. Although such an observer may have been con-
centrating well and following instructions, the model will  return very poorly 
constrained and extreme parameter estimates. Hence, to look for this pattern, 
we should fit an intermediate model, a cumulative Gaussian, which can cap-
ture usable performance on one or other side of the sj function, but not both. 
Only if the full sj model provides a better fit relative to this partial performance 
model should the participant be retained (c.f. Yarrow et al., 2013).

I have now discussed what I believe is a reasonable approach to model 
 comparison for nested models. I will finish this section by very briefly men-
tioning some possible approaches when models are not nested. Firstly, models 
can be compared using either aic or bic. Both of these statistics are equal 

21 Two models are nested if (basically) the more complex model can generate all the same 
sets of predictions that the simpler model can generate, plus a bit more. For example, 
stepwise regression compares nested models. Strictly, this approach requires that models 
are nested and that one of them is correct.
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to −2 times the log likelihood of the best-fitting model, but with a penalty ap-
plied to the model with more free parameters. For aic the penalty is simply 2 
per parameter, whereas for bic it is (generally) slightly greater per parameter 
and depends on the number of data points in the fit. bic is actually an approxi-
mation to the Bayes factor, an (arguably) more sophisticated form of model 
comparison in which model performance is considered across all parameter 
combinations, not just at the best-fitting values. A second tactic would be to 
develop a  Monte-Carlo simulation approach similar to that outlined above 
in order to produce a distribution of expected deviance improvements if the 
more  complex model is fitted to data generated by the simpler model. As men-
tioned earlier,  model comparison is a substantial and complex field, and there 
are several other  approaches that could be considered beyond those touched 
on here.

9 Alternative Approaches to Interpreting sj Data

Fitting a model is a nice way to summarise a set of sj data with a few meaning-
ful parameters. However, those parameters are only likely to tell you something 
useful if the model is (at some level) correct. The fact is, there is no consensus 
about whether any given observer model is correct, or about how literally pa-
rameter values should be interpreted. These considerations might lead us to 
consider doing away with any kind of parametric fit. For example, we could 
analyse the data without a pre-processing step, so that proportion judged si-
multaneous at each soa is the dependent variable, or we could attempt a non-
parametric fit to derive summary measures.

The former approach is used occasionally, sometimes as a supplement to 
a parametric fit. For example, Zampini et al. (2005) simply applied an anova 
to proportion simultaneous data, incorporating their set of soas as a second 
factor (the first factor being the two conditions they were comparing). Interac-
tions and main effects can then be interpreted to explain differences between 
conditions, although it may be somewhat challenging to explain what is go-
ing on in a succinct manner, particularly when many conditions are tested. 
Another concern is the application of anova in a situation where data are 
clearly non-normal. Proportion/percentage data are likely to be skewed (and 
less  variable) at the extremes (i.e., where most participants report synchrony 
not at all or all of the time). It might be possible to address this concern using a 
more complex variant of the generalized linear (mixed) model with an appro-
priate link function (in place of an anova), an approach that has been applied 
successfully for data yielding sigmoidal psychometric functions (Moscatelli, 
Mezzetti, & Lacquaniti, 2012).
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If summary measures akin to thresholds and psss are desirable, an alterna-
tive to a parametric fit would be to simply draw straight lines (or use some 
form of spline interpolation) between data points and make some informal 
 estimates on that basis (e.g., a window where the proportion judged simul-
taneous falls above 0.75, or the point at which the highest proportion of 
 simultaneity judgements is reached). However, noisy data tend to make this 
problematic, as the psychometric function may then appear non-monotonic 
on one or both sides. More sophisticated non-parametric approaches have 
been  developed, but mainly for the more common situation of a sigmoidal 
psychometric  function (e.g., Miller & Ulrich, 2001; Zchaluk & Foster, 2009). 
In some cases, it is possible to adapt these procedures to the sj task (Lee & 
 Noppeney, 2011).

10 Ternary Data

Before the sj reached its current level of popularity, several authors had con-
sidered expanding the toj to a ternary task in which the two order responses 
where supplemented with a “simultaneous” response option to indicate un-
certainty about order. In fact, latency-based observer models for this situation 
are formally identical to those I have discussed for the sj. In early analyses, 
the ternary task was typically considered to permit two binary divisions of 
the data, each yielding a sigmoidal psychometric function. In the first such 
division, the psychometric function was constructed by plotting the propor-
tion of times that observers report either “simultaneous” or “A then B” (i.e., the 
 proportion of times they said anything other than “B then A”). In the second 
division, it was constructed by plotting the proportion of times that observ-
ers report only “A then B.” These two psychometric functions are displaced 
from one another along the soa axis. Their difference represents the occasions 
when the  observer responded synchronous. Note that this provides an intui-
tive link regarding why the sj function can be described as the difference of 
two cumulative Gaussians.

In fact, we can fit observer models directly to these data without re- 
arranging them into a binary format. The observer models make predictions 
directly about a ternary division, which equates to predicting two out of three 
probability values at each soa (with the third being defined by the fact that 
probabilities sum to 1.0). The code accompanying this chapter includes op-
tions to perform such a fit based on the two models (i.e., the three and four 
parameter variants) that I described in Section 4. From a practical perspective, 
there is only one conceptually challenging point of difference. It is the data 
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model  (discussed for a binary fit in Section 6.2). Because there are three pos-
sible choices, the appropriate data model (applied at each soa) is no longer 
the binomial distribution, but rather the multinomial distribution, which can 
provide an exact likelihood of obtaining any particular combination of prob-
abilities that divide N choices into three bins when the actual probabilities of 
selecting each bin are known (or rather, for fitting purposes, predicted).22

11 Dual-Presentation sj Data

Several authors have investigated the use of a dual-presentation sj task in 
which two bimodal stimuli are presented (one after another) and compared, 
for example by reporting which one was (most) synchronous (Allan & Kristof-
ferson, 1974; Powers, Hillock, & Wallace, 2009; Roseboom, Nishida, Fujisaki, & 
Arnold, 2011). This is a form of what would, in classical signal detection theory, 
be described as a two-alternative forced choice (specifically the two-interval 
forced choice variant). However, that designation is ambiguous (about wheth-
er there are two presentations or two response categories) and has been ap-
plied to cases where either or both of the possible qualifying conditions are 
met, which is probably why the dual-presentation sj task has ended up being 
given a variety of names (e.g., temporal 2AFC; forced-choice successiveness 
discrimination; 2IFC sj, where the classic sj is referred to as 2AFC sj in the 
same paper). I will label it the 2xSJ.

The simplest form of the 2xSJ would have a synchronous standard on every 
trial along with a non-synchronous test pair. Based on the kind of observer 
models discussed in this chapter, the resulting psychometric function (plotting 
the probability of judging the standard more synchronous than the test against 
the test’s soa) is U-shaped and centred over the pss. This approach represents 
a reasonable way to derive estimates of inverse precision (i.e., σΔt) but a fairly 
poor way to estimate the pss, because having a synchronous standard on every 
trial provides feedback about objective synchrony. A simple solution is to also 
include a range of standards as well as a range of tests, in a roving standard 
design.

The observer model can be fitted to data even when both standard and test 
are non-zero, as described in detail by Yarrow et al. (2016; see also García-Pérez 
& Peli, 2014). To present all of the data, it is necessary to plot a function for 
each standard soa (using several standard plots, or a single 3D plot), which is 
somewhat cumbersome, but not a major obstacle to using the task. A simple 

22 <MultinomialLikelihood 9>.
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observer model with three parameters captures pss, sensory noise and an in-
terval bias (i.e., a tendency to select one interval in preference to the other 
under uncertainty).

The 2xSJ task provides estimates that correlate fairly well with equivalent 
parameters estimated using tojs, sjs, and ternary tasks. However, each trial 
takes longer than in those single-presentation tasks, which makes experi-
ments more onerous. There are a few reasons why the roving-standard 2xSJ is 
still worth considering. Firstly, it asks about synchrony explicitly (unlike the 
toj) and by requiring relative judgements it reveals a point of maximal syn-
chrony perception (whereas the sj and ternary tasks often reveal a range of 
soa values that are classified as synchronous). Secondly, it can be added in 
to a  single-presentation task (as a follow-up question every two trials), which 
somewhat mitigates the burden of additional experimental time. Finally, a case 
can be made that it will be more resistant to some forms of decision-level bias 
(Morgan, Grant, Melmoth, & Solomon, 2015; Morgan, Melmoth, &  Solomon, 
2013). As with the other tasks I have described, code to fit data from the 2xSJ 
accompanies this chapter.23 For further information, read the comments there 
and consult Yarrow et al. (2016).

12 Conclusion

In this chapter, I have outlined the benefits of fitting formal observer models 
to judgements about simultaneity, and described how this can be achieved us-
ing Matlab code (see book’s GitHub repository). In doing so, I have presented 
one particular observer model in some detail, and highlighted the fundamen-
tally subjective nature of the sj task, which requires us to think carefully about 
how both the strategic decisions and perceptual sensitivity of a participant 
can affect their psychometric function. I have gone on to supply a brief over-
view of appropriate models for several closely related timing tasks. I hope I 
have also provided enough of a tutorial regarding bespoke model fitting and 
evaluation to allow the interested reader to go forward and explore their own 
models of perceived simultaneity. Modelling may seem intimidating, but in 
fact, a good understanding of just a few basic concepts (which is best gained 
through  practical exploration) will take you a long way, providing tools to 
 engage more fully with the timing literature. This is an endeavour I would very 
much encourage!

23 <TwoAFCSimultaneity_3PEq_Multistart_rawdata>.
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Chapter 14

Using the Simon Effect in Simultaneity/Asynchrony 
Discrimination Tasks: Interest, Methods, and Limits

Anne Giersch, Patrick E. Poncelet, Céline Z. Duval and Laurence Lalanne

1 Introduction

In this chapter, we describe some methods to explore the automatic, uncon-
scious processing of asynchronous events that are judged as being simultane-
ous. We first describe our conceptual framework, which was guided by clinical 
inquiries on patients with schizophrenia. We then describe how we applied 
the Simon effect, as a novel method of analyses. The code provided with the 
manuscript (see book’s GitHub repository) will allow the reader to generate 
his/her own data. The aim of the chapter is to provide all the necessary infor-
mation for the reader to train and calculate effects like the Simon effect by 
including some example data files (see Annex). It must be noted at the onset 
that these calculations are not meant to replace more standardized measures 
like the evaluation of the threshold. They are only meant to complement them. 
Also, it is not the aim of this manuscript to provide a set method. We rather ad-
vocate that some flexibility in our methods can sometimes provide additional 
and useful information on the processes we explore. In the final section of this 
chapter, we provide an example of how and to which aim other methods can 
be used when utilizing identical tasks.

The flow of our mental activity in time is unidirectional, from the past to 
the future. This directionality is an intrinsic property of all cognitive functions, 
which appears to be a given fact, and which we seldom reflect upon or include 
as a parameter of our experimental approaches. Its importance is evident in 
clinical populations for whom the continuous flow of thought is altered. For 
example, clinical experience suggests that patients with schizophrenia suffer 
from a disruption of the feeling of time continuity. This disruption has been 
described by many psychiatrists based on patients’ reports (i.e., they are based 
on what the patients say within interviews with the psychiatrist; Andreasen, 
1999; Fuchs, 2007; Minkowski, 1933; Vogeley & Kupke, 2007; Chapman, 1966). 
The drawback of these reports is that they are selected and interpreted subjec-
tively by the psychiatrist. The impairments, thus, require objective experimen-
tation and measurement. It is with the goal of objectively characterizing such a 
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disruption that we devised new ways to look at temporal discrimination tasks. 
Although the aim of this chapter is to describe analysis methods and not the 
abnormalities of patients with schizophrenia, the development of these meth-
ods has been driven by their potential to be applied in our research.

Objectifying a disruption of the sense of time continuity requires an under-
standing of the mechanisms leading to the feeling of continuity to begin with. 
It is indeed far from clear whether our conscious access to sensory information 
is as continuous as experienced subjectively. Experimentally it is long known 
that two events are distinguished in time only if there is a minimal time asyn-
chrony between them (Elliott & Giersch, 2016, for a review). For example, two 
visual events displayed in distinct spatial locations will have to be delayed by 
30 to 50 ms to be distinguished in time (Brecher, 1932; Elliott, Shi, & Kelly, 2006; 
Pöppel, 1997; Wittmann, 2011). The fact that such an asynchrony is not zero 
leads to the concept of the temporal window, the interval of time within which 
the brain is hypothesized to process events as being co-temporal (Elliott et al., 
2006; Elliott & Giersch, 2016; van Wassenhove, 2009; Wittmann, 2011). These 
results confirm that the conscious processing of information is not as continu-
ous as experienced subjectively. As a matter of fact, if information is judged as 
being co-temporal within temporal windows, it is as if time stops for the period 
of the temporal window.

Other authors have also proposed that the processing of information is dis-
crete rather than continuous (e.g., Pilz, Zimmermann, Scholz, & Herzog, 2013; 
Scharnowski et al., 2009; VanRullen, Zoefel, & Ilhan, 2014). In case of Pilz et al.  
and Scharnowski et al., this conclusion is derived from studies on visual in-
tegration rather than timing per se. These authors show that sensory stimuli 
require time to be processed. The consequence of this constraint in the pro-
cessing time would be that information processing has an intrinsic inertia, 
which would not mirror external-event timing. Objects and scenes are indeed 
sensed and identified on the basis of multisensory signals, implying the need 
to integrate such sensory signals over space and sensory pathways. Even within 
a given modality like vision, bits of information have to be integrated before 
identification can occur (Boucart et al., 1994). This means that information 
is not processed instantaneously rather information is first decomposed and 
processed by specialized neurons. In the primary visual cortex, specialized 
pathways are used to process contour and surface information: neurons will 
respond selectively to orientation, code line-ends, and edges, or they will be 
activated by information related to color or texture. Whichever model is used 
to understand how information is bound together to identify forms and ob-
jects, time is required, because ambiguities regarding which information be-
longs to which object is often ambiguous (Grossberg & Pilly, 2008; Pugeault, 
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Wörgötter, & Krüger, 2010) and because it is also possible to mentally group or 
re-group objects (Pilz et al., 2013; Van Assche, Gos, & Giersch, 2008). A series of 
mechanisms are, thus, required to identify an object.

Finally, time is also needed to achieve neuronal synchronization. It is usu-
ally proposed that pools of neuron activations are formed to code all proper-
ties of objects. Such functional assemblies, however, require some time to be 
formed, as they rely on spikes synchronization (Varela, 1999). The perception 
of an object would not be available before such synchronization takes place, 
and, thus, accessing the experience of the object would need to be delayed. 
This may participate to inertia in information processing. The time required 
to experience each event, might, in turn, complicate the conscious temporal 
ordering of these events. In contrast, at initial stages, processing is parallel 
and accurate temporal properties of sensory information may be preserved at 
these initial, unconscious stages.

To check, therefore, whether temporal processing is more accurate at ini-
tial than at conscious stages, procedures are required to explore the implicit 
 processing of information in time, in addition to explicit processing (see van 
 Wassenhove, 2009, for additional arguments). ‘Explicit’ processing is defined 
here by the fact that, in a given task, participants are explicitly asked to make a 
conscious decision (e.g., decide whether or not stimuli are simultaneous; Coull 
&  Nobre, 2008). Implicit processing is defined by no such required judgment 
by the participants. For example, implicit mechanisms play an important part 
in  sensorimotor timing (Repp, 1999; van Wassenhove, 2009) and are not neces-
sarily equated with explicit judgments (Martin, Giersch, Huron, & van Wassen-
hove, 2013; van Wassenhove, 2009). In other words, implicit processing relies 
on mechanisms that do not require conscious thought, but that nonetheless 
can influence what we experience.

2 Exploring Implicit Timing Mechanisms with the Simon Effect

There are several techniques that allow one to assess the properties of implicit 
mechanisms; we will describe only a subset of those below. This section merely 
describes new ways to explore implicit biases in participants’ responses during 
simultaneity/asynchrony judgments. It should be noted that here, ‘biases’ refer 
to the fact that when participants press on a response key, they not only base 
their choice on a conscious decision.

The method we employed is based on the use of the Simon effect. The 
 Simon effect reflects the participants’ tendency to press the response button 
corresponding to the location where a stimulus is displayed on the screen. 
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Such a preferential response is generally present and it has been shown to 
be task independent (Hommel, 2011a). For example, if the task requires form 
 discrimination, participants will tend to press on the side of the displayed im-
age whatever its form. The precise mechanisms underlying this effect (i.e., 
 motor or attentional) are still under debate (Hommel, 2011a, b; van der Lubbe 
&  Abrahamse, 2011), but here we use the behavioural phenomenon as a tool to 
check the extent of implicit response biases during the simultaneity/asynchro-
ny discrimination task. In this task, two stimuli are displayed on each trial and 
remain on the screen until the participant gives a response. The relative on-
set time of the two stimuli is manipulated and stimuli appear with a stimulus 
onset asynchrony (soa) of 0 to 100 ms, in steps of 8 to 17 ms. The participants 
have to respond on whether the two stimuli are simultaneous or asynchronous 
by pressing a left or right response key. When the two stimuli are physically 
simultaneous, information is perfectly symmetrical on the two sides of the 
screen and there cannot be a Simon effect (i.e., there cannot be a bias to press 
to one side rather than the other due to the order of stimulus presentation). 
An asymmetry is present, however, in case of an asynchrony in the presenta-
tion of the two stimuli. Inasmuch the two stimuli do not disappear but they 
stay on the screen until a response is given, the only asymmetry is the onset 
asynchrony of the two stimuli. What can be determined in that case is whether 
this temporal asymmetry induces a tendency to press to the side of either the 
first or the second stimulus. The results of this test collected from healthy vol-
unteers show that responses are more frequently given using the response key 
at the same side of the second stimulus (Lalanne, van Assche, & Giersch 2012a, 
Lalanne, van Assche, Wang, & Giersch 2012b). When the second stimulus is 
on the right, they will, thus, press more frequently on the right than the left 
response key, resulting in more asynchronous responses (when ‘asynchronous’ 
is on the right) and less simultaneous responses (since there is only two types 
of responses, if ‘asynchronous’ responses increase, simultaneous responses 
necessarily decrease). Conversely, when the second stimulus is on the left, par-
ticipants tend to press more frequently the left response, and ‘simultaneous’ 
responses increase relative to ‘asynchronous’ responses. In healthy volunteers, 
this effect can be reformulated as asynchronous responses being more fre-
quent in the left-right than in the right-left  direction. This response imbalance 
suggests the presence of a direction bias, with asynchronies being more easily 
detected in one direction than the other. Such an explanation, however, does 
not explain the pattern of results obtained from patients with schizophrenia. 
Patients show this bias to the side of the second stimulus when the asynchrony 
is large enough, but they show an opposite bias when the asynchronies are 
sub-threshold (i.e., with small asynchronies patients have a bias to respond 
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to the side of the first stimulus not the second). The reversal of the bias with 
short soas means that when the direction of the stimuli is left-right, patients 
tend to press more frequently on the left (‘simultaneous’) than on the right. 
Conversely, when the direction of the stimuli is right left, the patients tend 
to press on the right (‘asynchronous’; Figure 14.1). By integrating the results of 
five experiments, we could demonstrate that patients show a bias to the side 
of the first stimulus even for asynchronies of only 8 ms (Giersch et al., 2015). 
These results lead to a larger amount of ‘simultaneous’ responses for left-right 
stimuli than for right-left stimuli, but only at the shortest soas. This precise 
effect has been replicated in five different groups of 18 to 20 patients (3 are 
published, Lalanne et al., 2012a, b). It can hardly be reduced to a global advan-
tage for the right-left over left-right direction. Such a direction bias would have 

1st square  2nd square

2d square  1st square

Time

Figure 14.1 Illustration of the Simon effect observed in patients affected by schizophrenia for 
soas of less than 20 ms, which is opposite in direction to the one found with larg-
er asynchronies and in the healthy population. The task of the participants was 
to decide whether the two squares displayed on the screen are simultaneous or 
asynchronous, and to press one of the two response keys accordingly. The Simon 
effect in this situation results in a bias to answer using the button on the side of 
the first square in patients, which is opposite to what is found in other  conditions. 
Such an effect leads to a higher number of responses on the left side when stimuli 
have been displayed in the left-right than in the right-left direction. In contrast 
the direction of the Simon effect in patients is in line with what is found in the 
healthy population for soas larger than 30 ms (i.e., there is a tendency to press 
the button to the side of the 2nd stimulus).
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been expected to be similar at all soas, which was not the case in patients. On 
the contrary, patients showed a bias to press to the side of the first stimulus at 
short soas, but a bias to press to the side of the second stimulus at long soas. 
The results, thus, suggest a bias to press to the side of the first stimulus when 
patients cannot perceive an asynchrony explicitly.

The readers can train themselves calculating the Simon effect with the 
 example data provided with the manuscript (see book’s GitHub repository: 
‘resultsRaw.txt’).

Interestingly, for soas as short as 8 ms, the bias to the side of the first stimu-
lus predicts the difficulties of the patients to explicitly detect asynchronies at 
larger soas. This correlation may suggest that the bias to the side of the 1st 
stimulus reveals an elementary mechanism at the core of our ability to predict 
and follow events over time (Giersch et al., 2015).

Difficulties at processing temporal information in patients with schizo-
phrenia did not come as a surprise. As already emphasized, it has long been 
reported that the patients’ thought flow is disrupted (Fuchs, 2007; Vogeley & 
Kupke, 2007). Psychiatrists had proposed that patients with schizophrenia 
have a difficulty to look forward in time (Minkowski, 1933). Importantly, these 
descriptions were made before the discovery of antipsychotics (in the 1950s), 
suggesting they are independent from treatment in schizophrenia. More re-
cently, it has been proposed that patients display a cognitive dysmetria (An-
dreasen, 1999); that is, a difficulty to organize thoughts, especially in time. With 
this background in mind, the reversal of the Simon effect observed at small 
asynchronies could reveal how visual stimuli are processed in time, and might 
contribute to a more general difficulty at organizing information in time. We 
made an attempt at interpreting the biases to answer to the side of the first or 
second stimulus, and proposed that healthy participants follow the events in 
time, and, thereby, have their attention on the second stimulus by the time of 
their response. In contrast, patients would stay stuck with the first stimulus 
in case of undetectable asynchronies. The patients would have difficulties to 
predict and follow sequences of events over a few ms, and this might be at the 
origin of their difficulties at explicitly detecting asynchronies (Foucher et al., 
2007; Lalanne et al., 2012a, b). These difficulties become huge when distractors 
are present, or in case of multisensory signals (Giersch et al., 2009; Martin et 
al., 2013; Schmidt et al., 2011).

Alternative explanations (eye movements, difficulty to relate stimuli in 
space, interhemispheric transfer, basal Simon effect; reviewed in Giersch, Lal-
anne, van Assche, & Elliott, 2013) were ruled out: eye movements had been 
controlled for by having participants fixating at the center of the screen, effects 
have been recorded with intra- as well as with inter-hemispheric presentation, 
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the typical Simon effect was not impaired per se in patients. Despite this, it was 
necessary to test our hypothesis, i.e., to verify that participants can automati-
cally follow stimuli over time, even when unable to tell these stimuli apart in 
time. We have done this in healthy volunteers by using a priming paradigm 
(Poncelet & Giersch, 2015), which is described in the following section.

3 Testing Implicit Timing Mechanisms with a Priming Task

To test whether the processing of visual stimuli over short intervals occurred 
automatically, we devised a new task, derived from earlier priming tasks  
(Elliott, Shi, & Sürer, 2007). In our task, priming stimuli were not related to 
the participants’ task, but nonetheless influenced performance. They were two 
empty frames displayed on the screen, one on the left and one on the right of 
the screen center. These two frames were subsequently filled in by the target 
stimulus that elicited the response. In a first task, only one frame was filled in 
with a white square. Participants were instructed to press on a response key to 
the side of the target, as quickly as possible (Figure 14.2). The main manipula-
tion regarded the frames that preceded the target as the frames’ onsets were 
either simultaneous or asynchronous, but the asynchrony was short enough 
not to be perceived by participants (this was checked after the experiment). 
Participants were slightly (but significantly) faster in conditions where the tar-
get was displayed to the side of the second frame rather than to the side of 
the first one, when there was at least 75 to 100 ms between the frames and the 
target (Poncelet & Giersch, 2015).

Detection taskSecond frameFirst frame

100 ms17 ms

Figure 14.2 Illustration of the priming task used to explore how participants follow events in 
time. Two frames are displayed either simultaneously or with an asynchrony too 
short to be perceived (17 ms). The task of the participant was to detect the target, 
which corresponds to the filling-in of one of the two frames. Participants are typi-
cally faster when the target is to the side of the 2nd than the 1st frame (Poncelet & 
Giersch, 2015).
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We had similar effects when both frames were filled in with an soa of 100 ms 
and participants decided which frame was last filled in (Figure 14.3). With such 
an arrangement, we had to take into account whether frames and targets were 
displayed in the same direction or in the opposite direction. We showed that 
participants were faster when targets were displayed in the opposite direction 
relative to the primes. This was observed independent of whether participants 
had to press to the side of the first or second stimulus. We interpreted these 
effects as reflecting a shift of attention towards the second prime  (Poncelet 
& Giersch, 2015). As a matter of fact, it is known that cueing the location of 
the first stimulus in a sequence of two facilitates temporal order judgment 
(Spence & Parise, 2010, for a review). The shift of attention towards the sec-
ond prime would displace attention on the location of the first target when 
primes and targets are displayed in opposite directions. This cueing effect of 
the second prime would explain that participants are faster at making tem-
poral judgments when the second prime is the location of the first target (i.e., 
when primes and targets are shown in opposite directions).

These results are important inasmuch they seem to be independent of di-
rection perception. Else responses should have been faster when both primes 
and targets were displayed in the same direction. This was not the case, sug-
gesting the results are related to time rather than direction (i.e., spatial percep-
tion). Second, we checked that the effects did not depend on the side of the 
response. We showed priming effects to be identical when participants had to 
decide about the side of the first target and when they had to decide about the 
side of the second one. These results, thus, suggest that participants are biased 
to shift their attention to the second stimulus and answer using the button on 

Second frame First target Second targetFirst frame

100 ms100 ms17 ms

Figure 14.3 Illustration of the priming paradigm used to explore the influence of asyn-
chronous priming stimuli (i.e., frames with an undetectable soa of 17 ms) in a 
temporal order judgment task. Whether participants had to press to the side of 
the first or second target did not change the results. Response times were always 
faster when the first target had been to the side of the second frame. The move of 
attention towards the second frame would prime the location of the first target 
and facilitate performance, similar to what happens with prior entry effects.
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its side. Such tendency is present even in tasks that do not require a temporal 
judgment (the detection task). Hence, it seems sensible to imply that the same 
phenomenon of attention shift occurs during the simultaneity/asynchrony dis-
crimination task. In the simultaneity/asynchrony discrimination task, there is 
no priming stimulus (no frame) but stimuli are also displayed one after another, 
and attention can be expected to shift towards the second one after both stim-
uli have been displayed. This might explain the bias to the side of the second 
stimulus in healthy volunteers during simultaneity/asynchrony discrimination 
tasks. Conversely, the impairment of this effect at short asynchronies in patients 
with schizophrenia suggests that patients with schizophrenia have difficulties 
to shift their attention from the first to the second visual stimulus in a sequence 
of two, as if stuck with the first one. This would be consistent with the clinical 
hypotheses that they have difficulties at following and/or predicting stimuli.

The Simon effect, thus, represents a way to investigate the implicit process-
ing of visual stimuli over time. However, there are several limits that should 
be kept in mind when using these procedures. First, the equipment should be 
checked carefully, and it should be verified with photocells that the delays be-
tween stimuli are as expected. Several parameters of the stimuli may influence 
the results, like the eccentricity of the stimuli, or their luminance. The typical 
Simon effect, which represents the bias to press on the side of a single stimu-
lus, may also affect the results: if patients and controls differ on the ability to 
be biased by the location of the stimuli, then it may induce a group difference 
that would have nothing to do with a shift of attention in time. An impaired 
typical Simon effect should, thus, be controlled for. Since there are always two 
stimuli in the simultaneity/asynchrony discrimination task, the best control 
for the typical Simon effect is to present two stimuli on the right or two stimuli 
on the left side of the screen (instead of one on the left and one on the right). 
In this way, the typical effect should be a bias to respond on the side of the 
two stimuli, even when the task is to decide about their asynchrony. The criti-
cal analysis is to check that patients and controls do not differ on this typical 
Simon effect. Finally, it should be verified whether the tendency to press to the 
side of the first or second stimulus is related or not to a direction bias (e.g., a 
preference for a direction over the other one). The simplest way to check for 
this possibility is to verify that the pattern of results is the same whatever the 
response side (i.e., right response key for ‘simultaneous’ responses and left key 
for ‘asynchronous’ responses vs. the reverse).

It should be noted that a potential difficulty is related to eye movements. In 
the results described above on simultaneity/asynchrony discrimination, the 
participants were required to look towards the center of the screen and this 
was monitored continuously via an eyetracker. Whenever a saccade or fixation 
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was recorded outside the center of the screen, the trial was discarded and run 
again at the end of the experiment. It would be useful to use at least a chin and 
a headrest to minimize the variance in the results. Overall, the Simon effect 
can be used as a valuable tool as long as one keeps in mind its limitations and 
interprets the results with some caution. Nonetheless, the Simon effect is a tool 
that can be adapted to many questions. In the following section, we provide 
some examples of questions that can be addressed with similar methods.

4 Analyzing the Responses in the Simultaneity/Asynchrony 
Discrimination Task in Innovative Ways

We have described how the Simon effect can be applied in the simultaneity/
asynchrony discrimination task to reveal nonconscious mechanisms of infor-
mation processing in time. We hope that the readers see that there are many 
innovative ways of analyzing data in addition to the standard methods, provid-
ed one keeps in mind the limits of each method (i.e., the need to check for all 
possible confounding factors). We think that other methods might be applied 
to address additional questions.

In Poncelet and Giersch (2015), we proposed that patients with schizophre-
nia do not only have difficulties to automatically shift attention in time but 
also to predict the stimuli. We reasoned that prediction mechanisms should be 
involved to enable attention to be shifted from the first to the second stimulus, 
especially when the stimulus onsets are separated by very short delays. It must 
be reminded here that the results detailed above have shown that in healthy 
volunteers attention moves only after 75 to 100 ms towards the second stimu-
lus in a sequence of two. This is consistent with the attention literature (see 
Poncelet & Giersch, 2015, for a thorough discussion on this point). This late 
attention shift implies that after the first stimulus onset, attention moves only 
with a delay towards the second stimulus. If the second stimulus is displayed 
for less than 20 ms after the first one, it means that attention moves only 80 ms 
after the second stimulus onset. Meanwhile attention is probably on the first 
stimulus to facilitate its processing. For attention to shift towards the second 
stimulus, it would, thus, help if the participant anticipated this second stimu-
lus. This means that the participants would not simply follow events one after 
another but predict sequences of events, and prepare for their processing. This 
hypothesis could be checked using a trial-by-trial analysis (that is, an analysis 
of performance that verifies whether performance on a given trial depends of 
the properties of the trial presented previously). It has indeed been repeatedly 
shown that participants can better prepare a response if they expect it at a 
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 precise point in time. This preparatory improvement can be observed when a 
cue indicates a delay (Correa, Lupiáñez, & Tudela, 2006), but also when look-
ing at the effects from one trial to the next trial. In the latter case, the expe-
rience of a delay during trial N-1 primes the participants to expect the same 
delay at trial N (Capizzi, Correa, Wojtowicz, & Rafal, 2015; Schröter et al., 2015). 
On the reverse, adaptation effects might also occur as in multisensory integra-
tion (Van der Burg, Alais, & Cass, 2013). Van der Burg et al. have indeed shown 
that when participants are exposed to an audiovisual asynchrony, they recali-
brate very fast sensory processing in order to process information as being syn-
chronized. They have also shown that such adaptation does not occur in case 
of unimodal information (visual only or auditory only; Harvey, Alais, & van 
der Burg, 2014). However, the Simon effect allowed us to show an unexpected 
sensitivity to short asynchronies. This led us to wonder whether soas are not 
expected in a more accurate way than previously known.

This hypothesis can be evaluated by measuring the ability to detect asyn-
chronies and taking into account what occurred during the trial before, not 
only the order of the stimuli (both trials left-right or right-left, or trials with an 
opposite stimuli direction) but also the relative asynchrony of the consecutive 
trials (trial N with a shorter, equal, or larger soa than trial N-1). These hypoth-
eses can be understood within the general framework of predictive coding, 
whereby information is constantly predicted. Real sensory information is com-
pared to predictions, enabling prediction errors to be detected (Friston, 2008). 
It has been proposed that ‘predictive coding’ might apply generally to brain 
functioning (Friston, 2008). In the context of the simultaneity/asynchrony dis-
crimination task, trial N can be predicted on the basis of trial N-1. When stimuli 
are displayed on trial N, the similarity or discordance with the previous trial 
should, thus, be automatically detected (see Di Luca & Rhodes, 2016, for an 
application of predictive coding and Bayesian models to expectations in time, 
and Tschacher, Giersch, & Friston, 2017, for applications in mental health). In 
the simultaneity/asynchrony discrimination task, the detection of a difference 
between successive trials may incite participants to adapt their predictions, 
and predictions themselves could influence the response of the participants 
in two ways. The most trivial effect would be a facilitated detection of asyn-
chronies in case of a similarity between trials N-1 and N (i.e., more asynchro-
nous responses). Conversely, there would be a deterioration of performance, 
i.e., more ‘simultaneous’ responses, in case of a difference between trials N-1 
and N. A deterioration of performance would be akin to an adaptation effect, 
but related to relative soa and not only direction (see e.g., the duration chan-
nel model for sub-second durations; Heron et al., 2012). Other effects may also 
be observed, related to the Simon effect. As discussed above, the  prediction 
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is especially important for the perception of the second stimulus, so that it 
is not missed. If the second stimulus is predicted on the basis of the previous 
trial, it might bias the response on this trial in a way that could be revealed by 
a modulation of the ability to detect stimuli in this location. The outcome of 
this influence would depend on whether the direction, the soa, or both are 
predicted and compared from trial to trial. The main point here is that it is per-
fectly feasible to explore all possibilities, and this could help to check further 
to which extent patients with schizophrenia have difficulties at predicting se-
quences of stimuli in time (Giersch, Isope, & Lalanne, 2016). The Simon effect 
is, thus, by no means a unique method, but only one example among the many 
things that can be done to improve our understanding of how we process in-
formation in time.

5 Conclusion

We used the Simon effect to derive hypotheses regarding how participants fol-
low visual stimuli in time at short time scales and how this is impaired in pa-
tients with schizophrenia. The same kind of method can be further adapted, 
e.g., to check for the implicit ability to predict very short soas in time. In other 
words, the Simon effect and related methods, are tools that can extend stan-
dard data analysis methods. As for any behavioral outcomes, the Simon effect 
does not provide direct insight into the mechanisms at play during a task, but 
it offers the possibility to make an inference. A major limitation of this type of 
inference is that participant’ responses are influenced by multiple aspects of 
the stimuli presented. Hence, the interpretation of the effects described above 
should be considered with caution. As it has been described at the beginning 
of the paper, the analysis of the Simon effect should be performed using mul-
tiple ways of testing, e.g., the priming task to validate the interpretation. De-
spite the limitations mentioned, these methods of data analysis can be used 
to complement standard rt and error analyses, and are powerful enough to 
yield heuristic hypotheses concerning both processing in healthy volunteers 
and impairments in patients.

Appendix: List of the Files Provided with the Manuscript (See Book’s 
GitHub Repository)

‘SyncTest’ is the Matlab code for the experiment with synchronous vs. asynchronous 
stimuli. Some explanation on how the experiment is conducted, the instructions, 
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and computer requirements, are provided in the header of the code. Questions can 
be addressed to the first author of this chapter.

‘resultsRaw.txt’ corresponds to the raw data generated with the ‘SyncTest’ program.
‘Results_With_variable_Names.xls’ is the same file as the ‘resultsRaw.txt’ in excel but 

with variable names.
Both .txt and .xls data files can be used by importing them in a statistics software pack-

age to calculate percent errors by taking into account the order of the stimulus (left-
right versus right-left).
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chapter �5

Tracking Time in the Infant Brain

Franziska Kopp

1 Introduction

From early on, infants learn to detect, predict, and adjust to internal and exter-
nal events through interaction with their environment. Research shows that 
aspects of timing inherent in these events seem to modulate and facilitate in-
fants’ perceptual and cognitive processing. In addition to allowing for infer-
ences about developmental trajectories and dynamics in human ontogeny, 
the investigation of these timing mechanisms in infants also allows the study 
of the structures and functions that build the foundation of the later, mature 
cognitive system. That is, identifying these fundamental processes provides 
insight into how timing processes in adults are basically organized. Infancy 
research has developed a number of useful methodological approaches that 
made these assessments possible. In this chapter, I will review some of the 
most established research approaches for this very young age group. The re-
view is also intended for researchers who are interested in the investigation 
of timing mechanisms early in development and who are unfamiliar with this 
methodology.

2 Experimental Research in Infancy

In the context of experimental research conducted with adults, experimenters 
can expect at least to some extent that their participants exhibit the behav-
ior that the experiment is intended to elicit; that they are able to give rela-
tively precise responses, such as reaction time data or verbalizations; and that 
they exhibit a certain level of cooperation during testing. In contrast, research 
methodology used with infants often relies on the monitoring of indicators 
that allow only indirect conclusions about the internal processes under in-
vestigation. Infancy research implies accepting the fact that usually no pre-
cise task instructions are possible; that unambiguous, overt responses cannot 
necessarily be expected; and that the researcher often is not able to predict to 
what extent infants respond to the setting and the stimuli as they are expected 
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to do. In other words, the variability in interpreting acquired infant data is typi-
cally high (Aslin 2007).

More than in any other age group, infants’ willingness to cooperate in ex-
perimental testing and subsequent data evaluation depends on a variety of 
factors. First, very young children have only a short attention span (Aslin & 
Fiser 2005). That is, experimenters need to plan their study in a way that it 
allows recording data within a short period of time. Second, the content of 
the experimental stimuli is typically confined to material that holds at least 
a minimum of the infant’s interest and that attracts attention to the intended 
place. This factor is particularly important for data collection that requires re-
peated presentation of the same stimuli (e.g., in event-related brain potentials 
designs, see below). On the other hand, the experimental stimuli should fulfill 
the demands of being standardized and controlled enough in order to allow for 
appropriate scientific inference.

Third, high levels of distractibility to both internal and external variables 
can generally be observed in infant populations. Therefore, visual and acoustic 
shielding is of particular relevance. Where not explicitly assessed, behavior is 
recommended to be video-recorded. Doing so guarantees that the researcher 
analyzes data from the experimental phases in which the infants were or were 
not attentive, depending on the research question. The increased distractibili-
ty also includes increased dependency in social situations, such as a caregiver’s 
presence or absence as well as the number and experience of the experiment-
ers. Fourth, in addition to attentional restrictions, very young children can be 
expected to display disproportionally high rates of random behavior, such as 
increased motor activity (de Haan 2007). This confounded variable may result 
in data contamination, data loss, high fluctuation, and high attrition rates, par-
ticularly in the context of physiological data assessment.

Fifth, following up on the finding of short attention spans, results obtained 
in infant experimental paradigms can be assumed to interact with infant de-
velopment in other domains. For example, cognitive development early in in-
fancy is very closely associated with social and motor development (e.g., Kopp 
& Lindenberger 2011, 2012). In other words, the experimental design, settings, 
and parameters need to take into account the respective developmental stage 
in several domains. Moreover, some of the experimental paradigms applied in 
infancy research (e.g., on perceptual processes) interact with memory. Hence, 
a potential confound with memory-related specificities, such as the reliability 
of recall and the temporal extent of memory (Bauer 2006), need to be con-
sidered in the interpretation of data thought to reflect the perceptual and 
cognitive processes of interest. Furthermore, overt responses in experimental 
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 situations may interfere with premature levels of motor control and of plan-
ning and executive processes (de Haan 2007).

Sixth, in general, infant data reveal a high degree of intra- and inter- 
individual variability (e.g., Gilmore & Thomas 2002). This constraint is particu-
larly significant with respect to inferential statistics. Due to high attrition rates, 
researchers are often required to test a large number of participants in order 
to identify genuine, underlying psychological mechanisms observed in reliable 
statistical effects.

3 Assessment of Infants’ Neural Activity

Given the limitations of the interpretability of behavioral data in this young 
age group, it seems particularly helpful to assess physiological parameters or 
some other online data. In the last couple of years, neuroscience has made 
substantial progress in the development and application of promising meth-
ods in the infancy domain. I will discuss a few of the common questions re-
garding the neuroscientific approaches used with infants.

Brain undergoes considerable developmental changes both in terms of 
structure and function. Experimental approaches have to take such changes 
into account. Comparability between the mature (adult) and the immature (in-
fant) brain activity may not always be evident. Early in ontogeny, brain matura-
tion processes, such as synaptogenesis or the beginning of synaptic pruning, 
play a major role. Pronounced lifespan changes in synaptic density have been 
demonstrated (Huttenlocher & de Courten 1987), showing a major increase 
of the number of synapses after birth, while synaptic pruning is initiated a 
few weeks after birth and continues over the lifespan. These mechanisms are 
associated with progressive specialization and differentiation, both in the be-
havioral and the neural domain. Johnson and Munakata (2005) described the 
structural changes as specialization, dissociation, and structural integration. 
In particular, development includes processes of narrowing, increased spe-
cialization, increased localization, and enhanced  focal activation. In addition 
to these structural changes, some empirical findings point to developmental 
changes in connectivity (Eiselt et al. 2001; Grieve et al. 2004;  Thatcher,  Walker, 
& Giudice, 1987). For example, according to one line of research (Thatcher 
1992), changes in connectedness—indicated by changes in coherence mea-
sures of electroencephalography (eeg)—can be observed especially in the 
first four years of life. In the left hemisphere, sequential lengthening of intra-
cortical connections takes place, whereas in the right  hemisphere,  sequential 
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contractions of  intra-cortical connections can be observed. Furthermore, con-
nectedness was shown to be modulated by experience- dependent variables in 
infants, such as motor behavior (Bell & Fox 1996) or specific cognitive capabili-
ties (Bell & Fox 1992).

To date, eeg is one of the most widely used assessment methods for infants’ 
neural signatures. One implication of the immaturity of brain activity early in 
life is the differences in scalp recordings compared to adult eeg signals. First, 
the functional equivalent of adult eeg frequency bands can be found in lower 
frequencies in small children. For example, while the frequency assigned as al-
pha is typically in the range of about 8–12 Hz in the adult eeg, it is in the range 
of about 6–9 Hz in young infants (e.g., Bell 2002; Marshall, Bar-Haim, & Fox, 
2002). As a consequence, studies addressing brain’s oscillatory activity have 
to take this issue into account. Second, developmental specificities can also 
be observed in event-related brain potentials (erp). erp components are sig-
nificant deflections of neural responses time-locked to an internal or external 
event. Typically, they are operationalized as averaged neural discharges across 
a sufficient number of experimental trials. Modulations of these components 
are thought to reflect corresponding psychological states and processes. Infant 
erp components usually differ from adult erp components in terms of am-
plitude, latency, or polarity (Jing & Benasich 2006; Kushnerenko et al. 2002; 
Little, Thomas, & Letterman, 1999; McIsaac & Polich 1992; Wunderlich, Cone- 
Wesson, & Shepherd, 2006). Infant erp data show higher inter-individual 
variability with respect to amplitudes and latencies (Thomas et al. 1997) and 
higher interference with movement artifacts or random noise. Short-term vari-
ability elicited by repeated presentation of the same or similar stimuli may be 
high (e.g., Thomas & Lykins 1995; Wiebe et al. 2006).

Both these and other factors require an adjustment of experimental eeg 
designs and parameters for infants. As for data acquisition, one has to keep 
in mind the overall high levels of movement artifacts, potential inattention, 
and fussiness resulting in high dropout rates. Moreover, for data analysis, some 
parameters, such as amplitude criteria for artifact control, need to be adjusted 
as well.

For the evaluation of experimental methodology, it is important to note 
that results from one source of data may dissociate from results obtained from 
other sources. This finding can be more pronounced than in adult research, 
given that adult participants may provide more precise behavioral measures 
than infants. In some cases, data may complement each other fruitfully. For 
example, de Haan and Nelson (1997) investigated infants’ face perception and 
found erp differences between the recognition of their mother’s and a dis-
similar stranger’s face; however, there was no indication that the infants recog-
nized the mother’s face in the behavioral results.
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4 Timing in Early Communication

Why should researchers investigate timing early in human ontogeny? The high 
relevance of temporal perception and action mechanisms becomes evident in 
the way infants learn about the world and, in particular, in the way they com-
municate with others. Infants learn through interaction with events in their 
environment, primarily from and through interaction with other people (e.g., 
Kopp & Lindenberger 2011, 2012). As such, perceptual and cognitive systems 
mature in interaction with the social communicative processes infants are en-
gaged in. Research shows that much of the communicative content of early 
interaction is conveyed through the specific timing of interactive parameters 
(Feldman & Greenbaum 1997).

For this type of investigation, infants are usually placed in situations of free 
play or structured play with other people, and behavior is coded with respect 
to the temporal parameters of interest. Another frequently used experimental 
setup for the study of timing in early interaction is a double- screen setup (each 
individual perceives audio-visual responses of his/her interaction partner via 
screen). It allows the manipulation of interaction dynamics, such as social 
contingency or temporal contingency, while essential features of face-to-face 
interactions are maintained (e.g., Nadel et al. 1999).

From these investigations, we have learnt that infants learn to expect contin-
gent responses from their environment, both in terms of content and timing, 
and that they are able to detect discrepancies in these interactional patterns 
from a very young age (e.g., Nadel et al. 1999; Striano, Henning, & Stahl, 2005, 
2006). They use temporal information from an ongoing social interaction and 
may express the timing dynamics either in the same sensory modality (e.g., 
imitation; Meltzoff & Moore 1977) or internally transfer it to another sensory 
modality (e.g., affect attunement; Jonsson & Clinton 2006). In line with this 
finding, coordinated temporal interaction has been observed between infants’ 
gazing behavior and adults’ vocalization (Crown et al. 2002).

Time-series analyses of mother-infant interactions revealed that temporal 
coordination and synchrony play important roles in affect transfer and are re-
lated to cognitive competencies later in development (Feldman 2007; Feldman 
& Greenbaum 1997; Jaffe et al. 2001; Kaye & Fogel 1980). Moreover, infants’ tem-
poral interaction dynamics seem to be closely related to specific temporal pat-
terns in the speech of their adult interaction partners (Condon & Sander 1974). 
Even preverbal infants engage in coordinated mutual vocalizing with adults, 
for example, by establishing tonal synchrony of the pitch of their utterances 
(van Puyvelde et al. 2015; van Puyvelde et al. 2010). On the other hand, disrup-
tions in the temporal parameters of the reciprocal exchange between adults 
and infants may be associated with clinical conditions, such as  depression 
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(e.g., Beebe et al. 2008; Field, Healy, Goldstein, & Guthertz, 1990), or with infant 
risk conditions (e.g., Lester, Hoffman, & Brazelton, 1985).

Why does time play such an important role in early communication? It has 
been repeatedly hypothesized that the tendency and the capacity to engage 
in interactions that are temporally coordinated with other people may be as-
sociated with biological rhythms, such as sleep-wake cyclicity or cardiac vagal 
tone (Feldman 2006), and that internal rhythms may be determinants of so-
cial interactions (Feldman 2007). This assumption has been corroborated by 
empirical findings on mother-infant synchrony obtained through dynamical 
systems modeling demonstrating both self-regulation dynamics and interper-
sonal coupling effects (Zentall, Boker, & Braingart-Rieker, 2006).

Based on their internal rhythmicity, children continuously learn to develop 
a sense of timing of their behavior in interaction with the timing of external 
events. Accumulated experience in this exchange with the environment en-
ables them to develop their perceptual capacities and predictions about the 
timing, which in turn allows infants to develop and adjust their actions in the 
world.

5 Timing Processes as Seen through Behavioral Data

Next to the macro perspective of communication processes, researchers have 
been demonstrating temporal processing in infancy on a micro level. Most of 
this research uses observed overt infant behavior, such as eye gaze, in order 
to make inferences regarding the hypothesized corresponding internal states. 
This approach often leaves room for ambiguity and variance.

One of the most commonly applied experimental paradigms takes advan-
tage of the phenomenon that repeated presentation of the same stimulus 
results in habituation to this stimulus (operationalized as decreased looking 
time) and the presentation of a novel stimulus in subsequent dishabituation 
(operationalized as increased looking time; Colombo & Mitchell 2009; Fantz 
1964). The procedure may include a habituation sequence of fixed trial pre-
sentation or infant-controlled habituation (relying on the real looking time 
toward a stimulus). This approach is helpful in assessing the capacity of de-
tecting differences in stimuli in preverbal infants. However, the understanding 
of the processes underlying habituation is a subject of debate (Sirois & Mare-
schal 2002; Turk-Browne, Scholl, & Chun, 2008). Regarding the specific investi-
gation of timing processes, one has to consider that the repeated presentation 
of stimuli in itself contains a temporal dimension.
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A second behavioral approach frequently used in experimental infancy re-
search is the inference about psychological states via the assessment of visual 
preference. Typically, two or more stimuli are presented simultaneously or suc-
cessively, and the proportional duration of gazing toward one of the stimuli is 
assumed to inform the internal representation and processing of this stimulus 
as compared to the other stimulus/stimuli. In other words, conclusions about 
the internal stimulus relation are drawn from the external stimulus relation. 
Looking times are usually compared against chance level. The procedure may 
include a familiarization phase to a specific stimulus, after which novel stimuli 
are introduced for comparison; otherwise, infants utilize their experience and 
knowledge without a specific familiarization phase.

Experimental approaches using infant gaze as the dependent variables are 
subject to a number of limitations. For example, the validity and reliability of 
the results and the conclusions that can be drawn may be challenged (see fac-
tors influencing infant data evaluation described above). Moreover, the ques-
tion is how comparable different looking times really are, for example, with 
respect to different age groups or the possible confound of memory interfer-
ence effects (Houston-Price & Nakai 2004). Furthermore, the interpretability 
of results in the absence of a statistically reliable effect or the evaluation of 
familiarity versus novelty preference are debatable (for detailed discussions, 
see Aslin 2007; Aslin & Fiser 2005). Nevertheless, statistically significant results 
may provide reliable indicators of internal mental states, particularly detec-
tion and discrimination capabilities.

These behavioral approaches have been used to study infants’ cognitive 
capacities to perceive temporal patterns and relations. Sensitivity to tempo-
ral phenomena, such as tempo, duration, rhythm, velocity, or synchrony be-
tween sensory modalities in multisensory events, has been demonstrated at 
early ages (Bahrick 2001; Byrne & Horowitz 1984; Dannemiller & Freedland 
1989; Lewkowicz, Leo, & Simion, 2010; Pickens & Bahrick 1997; Spelke 1979). 
These capacities undergo developmental changes in terms of precision and 
complexity during the first months and years of life (Bahrick 2001; Bahrick & 
Lickliter 2004; Lewkowicz 2000a; Pickens et al. 1994). Infants’ capacity to per-
ceive intersensory synchrony, which is assumed to precede responsiveness 
to duration, rate, and rhythm (Lewkowicz 2000b), seems to be of particular 
 relevance to their early experience of learning about and interacting with the 
world. In  other words, being able to relate two sensory stimulus components 
as  belonging to each other based on their temporal coincidence helps infants 
to extract and ascribe meaning to the world around them. Very young infants 
can already detect asynchrony between audition and vision in audiovisual 
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stimuli (Bahrick 1983; Dodd 1979; Lewkowicz 1996, 2010). Furthermore, young 
children use synchrony between auditory and visual stimuli for rhythm dis-
crimination (Bahrick & Lickliter 2000), affect discrimination (Flom & Bahrick 
2007), speech processing (Hollich, Newman, & Jusczyk, 2005), and word learn-
ing (Jesse and Johnson 2016). Perceptual experience of audiovisual synchrony 
 relations and active experience with the timing of audiovisual events (e.g., 
drumming  experience) may, in turn, increase infants’ sensitivity to discern be-
tween audiovisual synchrony and asynchrony (Gerson et al. 2015; Pons et al. 
2012).

6 Eye Movements

Global eye gaze data can provide empirical evidence to a number of research 
questions. In the domain of timing processes, however, it may be useful to rely 
on measures and paradigms that allow for the possibility of tracking temporal 
dynamics. Based on the idea that looking behavior may suggest what is in an 
infant’s mind, internal timing dynamics can be made visible with higher preci-
sion and validity.

Eye tracking has been increasingly used in infant populations. The availabil-
ity and application of this method have improved substantially, allowing for 
the assessment of precise spatial and temporal information regarding infants’ 
eye gaze (e.g., Aslin & McMurray 2004; Gredebäck, Johnson, & von Hofsten, 
2010).

These experimental techniques increase the possible spectrum of insight 
into psychological processes in infants and allow for inferences about tem-
poral aspects of selective attention (Lewkowicz & Hansen-Tift 2012), action 
 perception (Van Elk et al. 2008), categorization (McMurray & Aslin 2004), scan-
ning dynamics (Hunnius & Geuze 2004), attentional disengagement (Hunnius, 
Geuze, & van Geert, 2006), anticipatory processes (Hunnius & Bekkering 2010; 
McMurray & Aslin 2004), predictive changes (such as the representation of 
temporarily occluded objects; Gredebäck & von Hofsten, 2004), integration  
of audiovisual speech information (Guiraud et al. 2012), the role of audiovi-
sual temporal synchrony in infants’ attention to a talker’s face (Hillairet de 
 Boisferon et al. 2016), and the timing of responses to multisensory stimuli as 
compared to unisensory stimuli (Neil et al. 2006).

For example, to assess specific aspects of social interactions, such as speech 
perception, it may be helpful to gain information about infants’ precise 
gaze direction. It is known that, in the second half of the first year of life, in-
fants shift their attention from a talker’s eyes to a talker’s mouth  suggesting 
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a  developmental shift in the use of available speaker information. Using 
 eye-tracking methodology, Hillairet de Boisferon et al. (2016) were able to dem-
onstrate developmental differences of attentional indicators of the direction 
and the duration of infant gaze as a function of audio-visual speech coherence. 
Thus, high spatial and temporal resolution allow for greater insight into the 
dynamics of social and cognitive development.

7 Neural Dynamics

Neurophysiological data may also provide insight into infants’ internal states 
relatively independent of the child’s overt behavior. In many cases, neurophys-
iology complements behavioral observation. While some neurophysiological 
imaging techniques, such as near-infrared spectroscopy (nirs) and  magnetic 
resonance imaging (mri), are increasingly used in the infancy domain (e.g., 
Aslin & Mehler 2005; De Vita et al. 2006; Dehaene-Lambertz, Dehaene,  
& Hertz-Pannier, 2002; Emberson, Richards, & Aslin, 2015; Prastawa, Gilmore, 
Lin, & Gerig, 2005), other techniques, such as eeg, are already well established. 
eeg measures allow monitoring of neural activity with high temporal resolu-
tion, which makes them a preferred method for investigating timing dynam-
ics in the very young brain. Typically, neural activity is studied as recorded in 
either a continuous state or behavior, such as rest or play, or time-locked to a 
specific external or internal event. As discussed above, the human eeg un-
dergoes pronounced developmental changes (e.g., Picton & Taylor 2007) and 
thus the interpretation of eeg data elicited as responses to an experimental 
manipulation has to consider these changes.

Oscillatory activity in neural signals provides information about temporal 
fluctuations in the frequency domain of the eeg. Spectral analysis has been 
successfully used for several years in the investigation of spontaneous eeg 
(e.g., Bell & Fox 1992, 1996). However, the acquisition of infants’ time-locked 
oscillatory responses to experimental stimulus manipulation is still a sparse 
field of research. Here, due to the specificities of the infant eeg (see above), 
some methodological questions are not yet sufficiently resolved. Furthermore, 
the correlation of neural activity in certain frequency bands to perceptual or 
cognitive states and processes is often not as clear as it is in comparable adult 
research. Yet, initial studies have provided promising findings regarding the 
temporal processing in the infant brain. Of particular interest have been in-
fants’ neural responses to action observation processes.

Differences in event-related synchronization of alpha/mu band activ-
ity were observed in infants’ observation of ongoing goal-directed versus 
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 non-goal-directed movements (Nyström et al. 2010) and in observation versus 
execution of goal-directed action (Marshall, Young, & Meltzoff, 2011). More-
over, temporal neural dynamics associated with the observation of movements 
were significantly related to the infants’ own motor experience (van Elk et al. 
2008). Analysis of oscillatory activity also has the potential to provide informa-
tion about the time function of internal states during the processing of ongo-
ing actions. For example, alpha band activity was found to be attenuated not 
only during the observation of a grasping action, but also prior to the event 
when the stimulus allowed for anticipation of the occurrence of this action 
(Southgate, Johnson, Osborne, & Csibra, 2009). When actions are temporally 
occluded and the timing of movements is manipulated through introduction 
of continuous versus non-continuous movement, eeg signatures showed that 
attention- and memory-related processes (revealed in alpha and theta oscil-
lations) support infants’ tracking and internally representing observed move-
ment (Bache et al. 2015).

A more widely established measure in infancy research is event-related brain 
potentials (erp, see above). One experimental procedure that has produced a 
large body of literature is the measurement of the mismatch negativity (mmn), 
an erp component elicited and modulated by deviant acoustic stimuli in a 
continuous stream of homogeneous stimuli (e.g., Cheour 2006; Jing &  Benasich 
2006). A major advantage of the mmn is that it can be assessed already at the 
beginning of life and also while infants are asleep (Cheour et al., 2002a; Cheour 
et al., 2002b). mmn modulations reflect preattentive processing and can be 
regarded as stable and reliable indicators of the temporal  dynamics of auditory 
sensory memory. Using mmn assessments, very early neural  responsiveness 
to several dimensions of timing were revealed, including stimulus duration 
(e.g., Cheour et al., 2002a, 2002b), interval timing (Brannon et al. 2004), ratio of 
 occurrence of different inter-stimulus intervals (Brannon et al. 2008), tempo-
ral resolution operationalized as gap detection thresholds  (Trainor et al. 2001), 
and variations in the frequency spectrum of sounds (Kushnerenko et al. 2007), 
among others.

Apart from mismatch responses, erp correlates of temporal processing 
in infants were identified both for unisensory (e.g., Kushnerenko et al. 2001; 
Purhonen et al. 2005; Rosander et al. 2007) and multisensory stimuli. As de-
scribed earlier, infants rely preferably on temporal coincidence of sensory 
information to make sense of the world around them. Hence, the study of 
infants’ capacities to bind information from two sensory modalities together, 
such as audition and vision, has received increased interest. Using erp, early 
processing differences were shown for congruence versus incongruence of 
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concurrently presented auditory and visual information (Bristow et al. 2008). 
 Moreover, in line with findings in the adult brain, in very young infants visu-
al stimuli modulate auditory erp responses when presented simultaneously 
with acustic stimuli (Hyde et al. 2010). erp modulations were also observed in 
response to asynchronous versus synchronous presentation of a static face and 
of speech sounds as well as in response to congruence versus incongruence of 
dynamic visual and auditory speech streams (Hyde et al. 2011).

Neural correlates of audiovisual synchrony relations—independent of iden-
tity, congruence, or static versus dynamic presentation—were examined in two  
studies using non-speech stimuli (Kopp 2014; Kopp & Dietrich 2013). Infants 
saw and heard a person clapping her hands at a fixed time interval. In an infant-
controlled habituation paradigm, they did not detect a temporal discrepancy 
of 200 ms between audition and vision behaviorally (Kopp 2014), but showed 
dishabituation to a 400-ms asynchrony (Kopp & Dietrich 2013). In contrast, 
neural activity differentiated not only between synchrony and asynchrony 
(400 ms) perception, but also between synchrony and the subliminal tempo-
ral discrepancy (200 ms). Although the experimental manipulation included 
a temporal shift only in the visual modality, auditory erp activity was signifi-
cantly modulated relative to the synchrony conditions in both experiments. 
Moreover, results demonstrated that infants predictively adjusted their ongo-
ing neural activity very early after stimulus onset, resulting in an asynchro-
nous (400 ms) or temporally fused (200 ms) multisensory percept, respectively. 
In other words, depending on temporal synchrony relations between vision 
and audition and on how they were perceived behaviorally, brain signatures 
showed significantly different activity modulations that followed expectancy 
processes.

These two latter studies are examples of the potential of the assessment 
of online physiological measures and of the usefulness of collecting comple-
mentary measures (in this case, behavior and eeg) in the infancy domain. The 
overview in this chapter has demonstrated that the investigation of timing and 
temporal perception early in human development is still a developing research 
area. Some progress has been made both in the development of appropriate 
experimental methodology in infancy and in the understanding of timing 
mechanisms. Timing plays an important role both on a macro level, as seen in 
social interactions, and on a micro level, as observed in individual perceptual 
and cognitive processes. It seems fair to assume that research methods provid-
ing fine-tuned, online behavioral, and physiological measures are increasingly 
used. They make it possible to address the correlation between infants’ psycho-
logical states and the processing characteristics of internal and external events 
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in high temporal resolution, which is particularly useful in the field of timing 
phenomena. For present and future research, the combination of expertise in 
infancy research, neuroscience, cognitive psychology, and other related disci-
plines seems the most promising in terms of increasing insight into this fasci-
nating field of research.
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