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Abstract— In this study, we examined the contributions of
kinesthetic and skin stretch cues, in isolation and together, to the
static perception of weight. In two psychophysical experiments,
we asked participants either to detect on which hand a weight
was presented or to compare between two weight cues. Two
closed-loop controlled haptic devices were used to present
weights with a precision of 0.05g to an end-effector held in
a pinch grasp. Our results show that combining skin stretch
and kinesthetic information leads to better weight detection
thresholds than presenting uni-sensory cues does. For supra-
threshold stimuli, Weber fractions ranged from 22-44%. Kines-
thetic information was less reliable for lighter weights, while
both sources of information were equally reliable for weights up
to 300g. Our data for lighter weights complied with an Optimal
Integration model, while for heavier weights, measurements
were closer to predictions from a Sensory Capture model.
The difference might be accounted for by the presence of
correlated noise across the two cues with heavier weights,
which would affect model predictions such that all our data
could be explained through an Optimal Integration model. Our
experiments provide device-independent measures that can be
used to inform, for instance, skin stretch device design.

I. INTRODUCTION

Weight perception has been a topic of scientific enquiry

since the origin of the field of psychophysics. Numerous

researchers have measured the precision and accuracy of

weight perception in various tasks, as can be seen in a

review by Jones [1]. Various attempts have been made to

disentangle the contributions of the two primary sources

of information in haptic weight perception: kinesthetic and

tactile [2]. Kinesthetic mechanoreceptors encode information

on the state of muscles, tendons, and joints, while the four

tactile mechanoreceptors respond to deformations of the skin.

It has proven difficult, however, to analyze the contributions

of the two sources of information in isolation. One of the

limitations has been the absence of a device that allows

for independent control of kinesthetic and tactile cues. In

this experiment, we used a closed-loop controlled haptic

device to render weight with a precision of 0.05g. The

device simulated the static weight of a virtual object held

in a stationary pinch grasp by exerting force on the end-

effector held between the fingers. This approach allowed

us to separate kinesthetic weight cues from tactile ones.

For tactile information specifically, the major cue in such
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an interaction is most likely tangential deformation (i.e.,

shearing) of the skin on the fingertips [3]. Throughout this

paper, we will refer to this type of information as skin stretch.

We are interested in skin stretch because of numerous

recent attempts to simulate virtual object weight using this

cue (e.g., [3]). Only a few studies assessed the contribution

of both skin stretch and kinesthetic information to providing

the sensation of weight [4]–[6]. One of the limitations of

these types of studies is that the magnitude of skin stretch

stimulation is often either not reported in units of mass,

or it is not continuously monitored. Therefore, the results

obtained in these papers cannot be generalized and can only

be replicated using the specific devices described in the

papers. Giachritsis et al. mitigated this problem by using real

weights to assess the precision of both types of information

[6]. To separate the cues, they used thimbles to eliminate

tactile information and a hand rest to reduce kinesthetic

contributions. Their results suggest that skin stretch and

kinesthetic cues are integrated when assessing the weight of

a real object. Although their method has merit, the use of real

weights introduces confounding factors, such as the influence

of different lifting styles on the magnitude of inertial forces

and the limits in stimulus range imposed by having to

manufacture each stimulus. Therefore, we used an approach

similar to Giachritsis et al. [6], but we used carefully-

controlled virtual weights with a slow onset and offset, and

asked participants to not move their hands during weight

presentation. This allowed us to study (static) perception of

weight without inertia.

In Experiment 1, we investigated the detection perfor-

mance for the single and combined cues, whereas in Ex-

periment 2, we studied the supra-threshold precision of

weight discrimination for the single and combined cues. We

compared our observed data to two candidate models, since

finding an underlying model would allow us to make predic-

tions about stimuli that were not tested in this experiment. We

tested an Optimal Integration model [7], which shows how

the means and variances of cues can be pooled, and a Sensory

Capture model, in which the most reliable modality is the

only one that is represented in the multi-sensory percept [8].

Together, these results provide device-independent guidelines

for rendering weight of virtual objects through one or both

types of information.
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Fig. 1. Overview of the setup and the three experimental conditions. a) Overview of the entire setup, showing the arm supports, hand rests, thimbles, and
haptic devices. The participant is experiencing condition K with his right hand and condition T with his left hand. b) Close-up of the kinesthetic condition
(K), in which the participant’s elbow is supported while he actively holds up his forearm and hand. The custom-fitted thimbles attenuate tactile information.
c) Close-up of the tactile condition (T), in which the participant’s elbow and forearm are supported, and his thumb and index finger are resting on a padded
finger rest, while holding the end-effector with his bare fingers. In this condition, kinesthetic information is attenuated. d) Close-up of the combined cue
condition (KT), in which the participant holds the end-effector with his bare fingers and only his elbow is supported.

MATERIAL AND METHODS

Participants

In Exp.1, 10 participants performed the study, 8 males

and 2 females. Three additional participants completed the

experiment, but due to technical issues their data sets were

not recorded correctly and could not be used. The partici-

pants were 34±5 years old (mean±standard deviation), and

all were right handed. In Exp.2, 19 participants performed the

study, 6 males and 13 females. Two additional participants

completed the experiment, but their data was not analyzed as

their performance never exceeded chance level. The partici-

pants were 35±10 years old, and 17 were right handed. All

participants gave written informed consent prior to taking

part, were naive to the purpose of the experiment, and were

compensated for their time. None of them had any history

of neurological disorders. All experiments were approved by

WIRB, and were carried out in accordance with the relevant

guidelines and regulations.

Experimental setup

For both experiments, we used a setup comprised of

two 3-DoF haptic devices (Omega 3.0, ForceDimension,

customized in a similar way as discussed in [9]), each

equipped with two 6-axis force-torque sensors at the end-

effector (Nano17, ATI) to allow closed-loop control of the

rendered stimuli. The precision of force rendering was 0.05g

once the system had reached target force level. Participants

held the custom end-effectors of the Omega in a pinch

grasp between their thumbs and index fingers. The force-

torque sensors were placed directly underneath the aluminum

finger plates. The movement and force data from both force

feedback devices were recorded throughout the experiment.

Three conditions were used, see Fig. 1 for an overview of the

setup and conditions. The first was kinesthetic only (K): a

uni-sensory condition in which participants wore the custom

thimbles to ensure that the majority of the tactile weight

information was removed. A variety of 3D printed thimbles

with different thumb angles were used to ensure that each

participant could comfortably hold the end effector. The

thimbles were padded with participant-adjustable foam to

ensure a tight fit on all finger sizes. In this way, the thimbles

provided pressure around the fingers, which prevented the

skin from stretching and thus removed most of the task-

relevant tactile information. Participants rested their elbows

on a support, while holding up their forearms and hands.

The second was tactile only (T): a uni-sensory condition

in which participants rested their elbows and forearms on

a support, while resting their thumbs and index fingers

on a padded finger rest, such that most of the kinesthetic

information was removed. The third was kinesthetic-tactile

(KT): a multi-sensory condition in which participants held

the device with bare fingers, while their arm posture was

the same as in condition K. Throughout the experiment,

participants wore headphones playing white noise to cancel

any possible auditory cues. They were asked to provide

their responses using foot pedals. In Exp.1, they wore

custom glasses that prevented them from seeing their hands.

In Exp.2, participants wore a head-mounted display (Rift,

Oculus VR) for this purpose. Visual information, presented

on a screen (Exp.1) or the HMD (Exp.2), was used to guide

participants to the center of the workspace. As soon as

participants reached the starting position, which was always

the same, visual feedback was removed and the trial started.

Protocol

The participants’ task was to hold the instrumented end-

effectors of the two haptic devices as stationary as possible

and to compare the sensation of weight between their two

hands. A 2-alternative forced choice (2AFC) task was used,
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Fig. 2. Typical example of force profiles to illustrate the protocol. One
second after both the forces had reached their maximum force level, a beep
indicated that participants could provide their answer. Upon answering, the
force was ramped down in 1s. a) Exp.1, in which a 3s force ramp was used
and only 1 hand was presented with a force. b) Exp.2, in which both hands
received a force cue, which was ramped up in 2s in a staggered fashion.
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so participants had to choose which side was perceived to

be heavier and indicate this using foot pedals. The stimuli

comprised only downward forces, and no inertial effects

were rendered in response to participants’ movements. For

an illustration of the protocol, see Fig. 2. Each cue was

initiated with a linear increase (3s in Exp.1, 2s in Exp.2).

Once the first stimulus reached the stationary force level, the

second stimulus was ramped up 0.5±0.05 s (mean±standard

deviation) after. One second after the second force stimulus

had reached its constant level, participants were prompted

for a response by a sound. They were instructed to keep

their hands as steady as possible and to base their perception

on the stationary force level. Both forces remained constant

until participants provided a response, after which they were

ramped down (1s). By staggering the ramp-up force while

keeping the ramp time constant, participants could neither

use the ramp time nor directly compare the ramp slope as an

indication of the final force magnitude. In Exp.1, a slower

ramp was used to eliminate any additional cues about the

presence of a stimulus.

In Exp.1, we measured force detection thresholds for the 3

different cue types. The experiment consisted of 3 blocks and

took about 1 hour in total. Each block consisted of measuring

the threshold of a single cue, by presenting a force cue on

one hand only, and asking participants to indicate which hand

received a cue. The stimuli were weights of 10, 20, 30, 40,

50, 60, 80, or 100g. The side at which the force was applied

was pseudo-randomized. Each stimulus pair was repeated 12

times, resulting in 96 trials per condition.

In Exp.2, we measured supra-threshold precision (JND)

of weight perception for the 3 different cue types. The

experiment consisted of 9 blocks and took about 3 hours,

divided over 3 one-hour sessions. Each block consisted of

measuring the perceptual precision of a single cue type.

The same type of cue was presented to each hand, and

participants were asked to indicate which hand received the

heavier cue, at 3 reference weights: 100, 200, and 300g. The

comparison stimuli deviated from the reference weight by

±8, 16, 24, or 32%. The side at which the reference weight

was applied was pseudo-randomized. Each stimulus pair was

repeated 12 times, resulting in 96 trials per reference weight.

In both experiments, the order of the force cues was ran-

domized and the order of reference and comparison stimulus

was counterbalanced. The order of the blocked conditions

was counterbalanced between participants. At the start of all

experiments, 12 familiarization trials were performed.

Statistical analyses

For all experiments, we calculated the proportion with

which the comparison stimulus was chosen as being the

heavier stimulus, as a function of the weight of the com-

parison stimulus. A psychometric function (see Fig. 3 for a

typical example) was fitted to the proportion of responses of

each participant and condition by using the maximum likeli-

hood procedure provided in the Palamedes toolbox [10]. In

Exp.1, the PSE was fitted, while in Exp.2 it was constrained

to be at the reference weight. In both experiments, the slope
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Fig. 3. Example data and fits. a) The detection threshold (Exp.1) is the
weight at which the proportion of responses was 0.84 in the fit. b) The
JND (Exp.2) is the difference between the weight at which the proportion
of responses was 0.84 in the fit and the reference weight.

was fitted as a free parameter, and the lapse rate was fitted

in the range [0,0.05]. The guess rate was set to 0.5 in Exp.1,

while it was constrained to be the same as the lapse rate

in Exp.2. In Exp.1, we calculated the detection threshold by

determining the weight at which the proportion of responses

was 0.84. In Exp.2, we used the difference between the

weight at which the proportion of responses was 0.84 and

the reference weight for assessing the JND. To determine

the goodness-of-fit of the psychometric curves, the model

used to fit the data was compared to a “saturated” model

in 1000 simulations. For a more detailed description of this

procedure, see Kingdom and Prins [11]. A goodness-of-fit

of less than 0.05 was considered to be an outlier, and was

removed from the analysis.

For predicting multi-sensory performance using the Opti-

mal Integration and Sensory Capture models, measured uni-

sensory data were used. For the Optimal Integration model,

predictions of detection thresholds were made using the

Pythagorean Theorem [12]:

d′KT =
√

d′2K + d′2T (1)

for which d′-values were calculated from the response pro-

portions using the Palamedes toolbox. For predicting multi-

sensory JNDs, the following equation was used [7] (which is

equivalent to the optimal Weighted Summation model [8]):

JNDKT =

√
JND2

K JND2
T

JND2
K + JND2

T

(2)

Thus, using the Optimal Integration model, the multi-sensory

condition is always predicted to have less noise than any of

the uni-sensory conditions. For predicting detection thresh-

olds and JNDs using the Sensory Capture model, the best

performing uni-sensory conditions were used for each par-

ticipant and reference weight [8].

Parameteric and Bayesian repeated measures ANOVAs

were performed on the DTs and JNDs, to test the effect

of condition and reference weight. If the sphericity criterion

was not met, Greenhouse-Geisser correction was used. When

appropriate, Bonferroni-corrected post-hoc tests, t-tests and
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Fig. 4. Detection thresholds and JNDs for conditions K, T, and KT in
colored bars, with error bars representing standard error of the mean. a)
Detection thresholds for Exp.1. b) Weber fractions for Exp.2. Note that the
kinesthetic condition does not perform very well for light weights.

Wilcoxon signed-rank tests were performed. All t-test results

employed two-tailed probabilities. For ANOVAs and t-tests,

an α level of 0.05 was used. For Bayesian statistics, BF01

were used, which represents the degree to which the data

supports a hypothesis (i.e., the presence of a main effect)

[13]. A BF01 < 0.067 (BF01 > 3) is considered strong

evidence that the main effect is present (absent).

Movement data were analyzed by calculating the differ-

ence between the lowest and highest vertical position of

the end effector on each trial. Force data were analyzed

by calculating the average sum of the inward force exerted

on the index and thumb force sensor, thus representing the

average squeeze force exerted during the trials. To assess

the effect of weight on movement and force data, linear

regressions with intercept and slope were calculated for each

participant, condition, and experiment.

II. RESULTS

In Exp.1, we measured weight detection thresholds for

conditions K (kinesthetic cues only), T (tactile cues only),

and KT (both kinesthetic and tactile cues present), as shown

in Fig. 4a. Two of the 30 psychometric curves were discarded

for not meeting the goodness-of-fit criterion. The resulting

thresholds were 55±6g for K, 42±6g for T, and 32±5g for

KT (mean±standard error). A one-way repeated measures

ANOVA on the measured thresholds showed a significant

effect of condition, with F2,14 = 13, p <0.001, η2p = 0.65,

BF01 = 0.021. Bonferroni-corrected posthoc tests show that

the KT condition differed significantly from the K condition

(t8 = 4.7, p = 0.007), whereas the other conditions did

not differ significantly from each other (KT and T: t7 =
2.7, p = 0.083; K and T: t8 = 2.5, p = 0.11). The threshold

for KT predicted from modeling was 31±5g for Optimal

Integration and 43±5g for K for Sensory Capture, as shown

in 5. Two paired samples t-tests, with Bonferroni-corrected

αs of 0.025, showed that KT measurements did not differ

from predictions of the Optimal Integration model (t7 =
−0.37, p = 0.72, BF01 = 2.8), while they did differ from the

Sensory Capture ones (t8 = 3.1, p = 0.015, BF01 = 0.21).

In Exp.2, we measured discrimination thresholds for

supra-threshold stimuli in conditions K, T, and KT, by asking
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Fig. 5. Correlations between measured multi-sensory thresholds and
predictions from the Optimal Integration model (magenta triangles) and
Sensory Capture model (cyan squares). For Exp.1, The Optimal Integration
model seems to capture measured data well, while participants performed
better than predictions of the Sensory Capture model. For Exp.2, the
measured thresholds are worse (i.e., higher) than the ones predicted from
Optimal Integration for 100 and 200g, while the Sensory Capture model
performs better at modeling data for these weights.

participants which hand received the heavier cue. Both hands

received the same type of cue, and a range of test stimuli

were compared to reference stimuli of 100, 200, and 300g.

The JNDs for the three reference weights and the three

conditions are shown in Fig. 4b, with five of the 171 fits

being discarded because of not meeting the goodness-of-

fit criterion. A two-way repeated measures ANOVA on the

measured JNDs with the within-subjects factors ‘condition’

and ‘reference weight’ showed a significant effect of both

weight (F2,26 = 13, p < 0.001, η2p = 0.51, BF01 < 0.0067)

and condition (F2,26 = 4.5, p = 0.021, η2p = 0.26, BF01 =
0.048). The interaction effect was significant too (F4,52 =
2.7, p = 0.040, η2p = 0.17, BF12 = 1.2). Bonferroni-

corrected posthoc testing of the ‘weight’ and ‘condition’

factors showed that 100g differs from 200g and 300g (100

to 200: t = 3.4, p = 0.005; 100 to 300: t = 4.8, p < 0.001),

while 200g and 300g do no differ significantly from each

other (t = 2.0, p = 0.15). Conditions K and KT differ

significantly (t = 3.2, p = 0.008), while the others do not (K

and T: t = 0.94, p > 0.99; KT and T: t = 2.2p = 0.099). To

test the Optimal Integration and Sensory Capture models (see

Fig. 5), two separate repeated measures ANOVAs were per-

formed, in which the measured and predicted KT thresholds

were compared, while using weight as the second ‘within-

subject’ factor. Bonferroni-correction was used to adjust α to

0.025. The measured thresholds differed significantly from

the ones predicted from Optimal Integration (F1,13 = 27, p <
0.001, η2p = 0.67, BF01 < 0.0067), while they did not differ

significantly predictions from the Sensory Capture model

(F1,15 = 0.028, p = 0.87, η2p = 0.002, BF01 = 4.6).

Both the grip force data (Fig. 6a) and the movement data
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Fig. 6. Median force and position data across all experiments (different line styles and markers) and conditions (different colors), with error bars indicating
±1 standard error. a) Grip force data, representing the mean squeeze force between thumb and index finger per trial. For smaller weights, participants
exerted the largest grip forces in condition K, which was probably caused by wearing the thimbles. Data from literature (ref1 in solid black [14]) indicate
that the grip force modulation in conditions T and KT resembles that observed for real objects with comparable material properties. b) Movement data,
representing the downward movement per trial. For condition T, expected vertical movements based on finger impedance measurements from literature (ref2
in solid black [15]) match the measured movements closely. Thus, very little movement beyond that caused by skin stretch was present in that condition.

(Fig. 6b) show a gradual increase with presented weight,

which is confirmed by their slopes being significantly greater

than 0 in a Wilcoxon signed-rank test (W83 = 3570, p <
0.001, BF01 < 0.067 for force, W83 = 3570, p < 0.001,

BF01 < 0.067 for movement). To provide a reference for the

amount of hand movement present, we selected data from

literature from users statically holding a silk-padded object

[14] (required grip force for holding a hard object depends

on its material properties, and our end effectors had a smooth

aluminum surface). The comparison data, plotted in Fig. 6a,

suggest that grip forces for conditions without thimbles are in

the range expected from literature, while they are higher for

the lighter weights in condition K. To compare movements

measured in condition T to skin stretch data from literature,

we used finger pad impedance data from Pataky et al. [15].

The authors show that finger pad stiffness depends on grip

force, so we calculated expected stiffnesses and resulting

predicted movements from measured grip forces, which align

well with measured movements in condition T (Fig. 6b).

DISCUSSION

We investigated the contribution of skin stretch and kines-

thetic cues to the perception of static weight up to 300g. Our

experiments provide device-independent measures of detec-

tion thresholds and Just Noticeable Differences for both types

of information alone, and for their combination. Combining

cues led to better weight detection thresholds than presenting

uni-sensory cues did. Weber fractions ranged from 22 to

44% for supra-threshold stimuli. Kinesthetic information was

generally less reliable for lighter weights, whereas for heavier

weights up to 300g the two cues were roughly equally

reliable. These results can be used as guidelines for designing

skin-stretch devices for presenting weight to users.

To assess the validity of our experimental setup, we

investigate the degree to which our setup was able to

present tactile and kinesthetic weight cues, separately and

in conjunction. We used a a force onset ramp that was much

slower than lifting an object in a natural setting. Moreover,

participants were required to maintain a static posture, while

one of the most salient cues for weight perception is inertia,

which is why the Exploratory Procedure for judging weight

is moving an object up and down [16]. We restricted our

experiment to static weight with a slow force increase for two

reasons. Firstly, we wanted to be able to distinguish between

the perception of static weight and of inertia, since they

likely both influence the final percept of weight. Secondly,

limiting kinesthetic stimulation is even harder in a dynamic

task, since that would require a grounded finger rest that

would move along with the participant’s movements. The

slow force increase was helpful to ensure participants kept

their hands as static as possible in the kinesthetic condition.

The question now remains to which degree the static

weight presentation might be unnatural, which could have

affected the experience and thus the external validity of the

results. Although we cannot be certain of the participants’

subjective experience, we can look at signatures that imply

‘normal’ behaviour. Such a signature is the tight coupling

between lifting force and grip force, which is present in

normal lifting of objects, and also in static holding of weights

[14], [17]. Our grip force data (Fig. 6a) highlights an increase

with presented weight, and are comparable to grip force

data from literature [14]. Grip forces were higher in the K

condition, probably due to the thimbles, but we still see the

modulation of grip force with presented weight, which all

points to participants showing natural behaviour.

Furthermore, we can assess how well we separated kines-

thetic from tactile cues. For the K condition, the custom

thimbles with participant-specific padding were tight-fitting,

so the skin was unable to move and pressure was exerted

around the finger constantly, which was unrelated to the

presented force. For the T condition, we can compare our

movement data to literature. Fig. 6b shows a good agreement

between measured movements in our T condition and predic-

tions from literature [15]. These data from literature represent

impedance measurements when constraining the finger up to

the Proximal Interphalangeal joint, so very little movement

beyond skin stretch was present when stretching the fingertip
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tangentially. This suggests that the most important cue in our

T condition was indeed skin stretch.

The thresholds in our study are worse than those reported

in literature. In Exp.1, the DT in our KT condition (which

is closest to ‘natural’ weight presentation) was 32g, while

literature reports thresholds as low as 10g [18], [19]. In

Exp.2, our Weber fractions for the KT condition were 20-

30%, while literature reports a range between ∼9-13% for

unconstrained lifting of real objects, which is ∼1.5 times

worse for static perception of real objects placed in the hands

[1]. Giachritsis et al. [6] reports JNDs of 15-25% for active

lifting of real objects. These differences are probably due

to the absence of inertial cues in our experiment, which

resembles a very slow placement of a real object on a

stationary hand. Thus, our result show that even in a static

situation, the force ramp caused by placing a weight on a

user’s hand is an important cue for weight perception.

Research in experimental settings similar to ours [4] sug-

gests that tactile information is more precise than kinesthetic

for smaller weights, while for weights of 300g and heavier,

tactile sensitivity is greatly reduced and kinesthetic informa-

tion becomes the more reliable source. We observe similar

trends in our data, but we do not see the massive deterioration

of tactile sensitivity at higher weights. The authors attribute

the deterioration to saturation of the tactile stimulus, meaning

they believed they approached the limit of skin stretch sen-

sation for the finger pad. However, their skin stretch device

did not deliver force-controlled stimuli, so we cannot tell if

their tactile 300g cue reflected a physical 300g weight cue.

Additionally, the finger pad is unlikely to approach its stretch

limit at 300g, as work on the shear properties of the finger

pad shows increasing displacements with increasing force up

to 5mm at 5N (510g) [15], which agrees with the movements

in our T condition being ∼4mm for 400g. Thus, the tactile

sensation of the finger pad not being fully saturated at 300g

is in agreement with the material properties of the finger

pad, and the results in Minamizawa et al. could be due to

device limitations. This slight discrepancy between literature

and our results actually indicates the importance of obtaining

device-independent measures of perceptual performance.

Our measured detection thresholds match predictions from

the Optimal Integration model, whereas results of JNDs are

more in line with predictions from the Sensory Capture

model. It seems unlikely that participants change the way

they integrate information when the weight range changes.

Our results cannot conclusively resolve this paradox, but

an alternative hypothesis is that our sensory inputs were

corrupted by correlated noise, which is known to reduce the

benefits of Optimal Integration [20]. Given that both types

of information were provided by the same device, rendering

noise would be present in both cues. Increasing the rendered

force leads to more instability in haptic systems [21], and

thus correlated noise is likely to only have a noticeable

influence for weights well above detection threshold. Thus,

we propose that Optimal Integration of skin stretch and

kinesthetic information was present in both experiments, but

the benefit of integration was reduced for heavier supra-

threshold stimuli.
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[12] M. Pannunzi, A. Pérez-Bellido, A. Pereda-Baños, J. López-Moliner,
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