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Combination and Integration in the Perception
of Visual-Haptic Compliance Information

Martin Kuschel, Massimiliano Di Luca, Martin Buss, and Roberta L. Klatzky

Abstract—The compliance of a material can be conveyed through mechanical interactions in a virtual environment and perceived
through both visual and haptic cues. We investigated this basic aspect of perception. In two experiments, subjects performed
compliance discriminations, and the mean perceptual estimate (PSE) and the perceptual standard deviation (proportional to JND) were
derived from psychophysical functions. Experiment 1 supported a model in which each modality acted independently to produce a
compliance estimate, and the two estimates were then integrated to produce an overall value. Experiment 2 tested three mathematical
models of the integration process. The data ruled out exclusive reliance on the more reliable modality and stochastic selection of one
modality. Instead, the results supported an integration process that constitutes a weighted summation of two random variables, which
are defined by the single modality estimates. The model subsumes optimal fusion but provided valid predictions also if the weights
were not optimal. Weights were optimal (i.e., minimized variance) when vision and haptic inputs were congruent, but not when they

were incongruent.

Index Terms—Perception, haptic, vision, integration, optimal fusion, combination, human system interface, virtual reality.

1 INTRODUCTION

THE mechanical properties of an environment (such as
compliance/stiffness, density/damping, or center of
mass/inertia) are perceived during active manipulation
primarily by processing position-based information (posi-
tion, velocity, acceleration, jerk, etc.) and force cues. See
Fig. 1 for an illustration. Position-based cues are provided by
both visual and haptic modalities, for example, by the visible
displacement of the fingers pressing into a surface and by
kinesthetic cues to the change in joint angle. Force cues are
primarily haptic, in the form of kinesthetically sensed
resistance, although visual cues may arise, for example,
from visible surface deformation. A model that accurately
captures the perceptual process by which position and force
are utilized to produce a compliance judgment will
contribute not only to psychophysical knowledge, but also
to the design and control of human system interfaces used to
access virtual or remote environments.

Psychophysical research into visual-haptic perceptual
interactions has frequently shown that both modalities
influence perceptual outcomes, but with differential impact,
e.g., [1], [2], [3]. Various approaches argue that the relative
contribution of each modality depends on modality appro-
priateness [4], effectiveness [5], or the direction of attention
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[6]. In[7], it was proposed that bimodal estimates of the same
property can be integrated optimally, such that the final
percept is a weighted average that minimizes the variance
(i.e., maximizes reliability) of the estimate. The optimal
fusion model has been broadly invoked, e.g., [7], [8], [9], [10],
although exceptions do occur [8].

Most research on bimodal perception has focused on how
redundant estimates of the same parameter (e.g., position as
estimated by the visual and the haptic modalities) can be
fused into a unitary estimate, a process we call integration.
The estimation of properties that depend jointly on non-
redundant, complementary information, which we call
combination, has generally not been addressed in detail.
The perceptual estimation of compliance through haptic
exploration involves a combination of position and force
information. According to Hooke’s law, the compliance S is
expressed as the division of the indentation x by the force f:

=—. 1

5=7 (1)

Hence, perception of compliance requires processing the

combination of both position and force information; the two

variables are nonredundant. Of course, when there are

redundant estimates of compliance, integration of those
estimates could also occur.

Various studies have investigated people’s ability to
perceive compliance when only haptic information is
available (e.g., [11], [12], [13], [14], [15], [16]). These
generally conclude that performance in estimating compli-
ance is considerably worse than in estimating position or
force from haptic cues. Weber fractions ranging from 12 to
35 percent have been reported for unimodal estimation of
compliance. In these experiments, real compliant objects,
such as rubber specimens, or virtual objects rendered using
a haptic human system interface (HSI), are manipulated
without vision. Multimodal studies, which involve the
visual modality as well as the haptic one, are rare.
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Fig. 1. Visual-haptic perception of compliance S: position information =
is measured by the visual and the haptic modality. Force information f is
only provided by the haptic modality. The final percept S,;, can be
obtained by combination and integration processes (Fig. 2).

The first study that analyzed the influence of visual
information on haptic compliance perception reported a
significant influence of visual information on the final
percept [17]. Recent studies extended this result by analyz-
ing cross-modal interactions [18] and discrimination perfor-
mance [19], [20]. While haptic information is sufficient to
perceive compliance (force and position cues are provided),
it seems not to be a necessary condition. In [19], evidence
was provided for a compliance estimate based entirely on
vision. However, this requires visual force information.
Since humans have no visual force sensor, the visual force
information must be inferred. When a surface is compliant,
the deformation pattern (i.e., the profile of the indentation at
the contact point) provides a cue to force, e.g., under the
assumption that greater force means indentation spreads
further from the contact point. Another cue would be the
material from which the object appears to be made, e.g., a
matte surface might be associated with a compliant material,
leading to discounting of the indentation cues, and a shiny
surface might be associated with a rigid material, accent-
uating indentation cues. The appearance of an indentation
tool might also be used, for example, a larger or shinier tool
might be associated with higher force.

This paper proposes a mathematical model for visual-
haptic perception of compliant objects, based on two
psychophysical experiments. In Experiment 1, the order
of combination and integration processes was analyzed.
The result indicated that initially each modality combines
position and force into a unimodal compliance estimate;
then, in a successive step, the unimodal estimates are
integrated into a bimodal estimate. In Experiment 2, the
integration process was analyzed in detail. The result
indicated that visual and haptic compliance estimates are
integrated based on a weighted summation process using
weights that are not optimal if conflicts occur.

2 MobDELS FOR VISUAL-HAPTIC PERCEPTION OF
COMPLIANCE

2.1 Process Models

As a theoretical basis for the first experiment, we consider
process models that describe the perception of compliant
information. These differ in the order of the processes that
combine and integrate visual and haptic information, as
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Fig. 2 The two process models of visual-haptic compliance estimation
(double lined box of Fig. 1): in Process Model 1, unimodal compliance
estimates are integrated to a bimodal percept (combination before
integration). In Process Model 2, bimodal position estimates are
combined with bimodal force estimates (integration before combination).
(The visual force is marked as an internal source as it cannot be sensed
directly.)

depicted in Fig. 2. Process Model 1 assumes that in a first
step, each modality provides a compliance estimate by
combining nonredundant position information « and force
information f. (As noted above, there is evidence that force
information is cued at least to some extent by vision [20].) In
a second step, the visual compliance estimate S, and the
haptic compliance estimate S}, are integrated to determine
the final percept S,;,. Process Model 2 assumes that, in a first
step, redundant position information is integrated to
produce a composite position estimate z,;, and redundant
force information is integrated to produce a force estimate
fon- In a second step, position and force estimates are
combined to create the final percept of compliance S,y

2.2 Integration Models

As a theoretical basis for the second experiment, we
consider three mechanisms for estimating compliance from
independent, redundant sources, called integration.

2.2.1 General Assumptions

We assume that the single modality estimates are Gaussian
distributed and denoted by the random variables

Xv ~

N(Nm U’U)7
2
X, ~ (2)

N(Nha Uh)a

where 41 is the mean perceptual estimate and o the perceptual
standard deviation. We further assume that the final estimate
is captured by the random variable

th ~ f(ﬂz)ha O’wh,)a (3)

which is not necessarily Gaussian distributed. The relia-
bility of an estimate or a percept is
1
r=—. 4
- (W
Fusion of multimodal information is said to occur if the
reliability of the multimodal estimate is greater than the
reliability of the most reliable single modality estimate. That
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is, the perceptual standard deviation of the final percept is
smaller than the smallest perceptual standard deviation
among those provided by the single modality estimates.
Confusion is said to occur if the perceptual standard deviation
of at least one unimodal estimate is smaller than the
perceptual standard deviation of the multimodal percept.
In this case, the observer is confused by the different sources
of information. No fusion/confusion is said to occur if the
reliability of the final percept is equal to the reliability of the
most reliable single modality estimate. This is consistent with
the judgment relying on this modality. Note that the terms
“fusion” and “confusion” are not defined by a particular
model but only by the relation between the unimodal and the
multimodal perceptual standard deviations.

2.2.2 Sensory Capture

The trivial way to deal with two sources of redundant
information is to disregard one source and concentrate on
the other, which will produce the result called above “no
fusion/confusion”. Here, the perceptual system concen-
trates on the most reliable modality and the bimodal
percept is equal to the estimate of this modality. The
process is called sensory capture. The model is described by

Xop = X, )

Here, the subscript ¢ is either h or v, representing the most
reliable modality, haptics or vision.

2.2.3 Weighted Summation

The second basic way to deal with redundant information is
to generate a weighted average of the different random
variables defined by the different estimates. We call this
process weighted summation of redundant information. For a
bimodal percept the model is described by

th = vav + thiu (6)
Wy +wp, = 1.
The mean of the joint distribution is
ok = Wylly + Wh - (7)
And the variance becomes
‘712;}1, = (w'vav)2 + (whgh)2~ (8)

Depending on the weights, the model can capture fusion,
no fusion/confusion, and confusion. Maximum confusion
occurs when the reliability of the bimodal percept is equal
to that of the least reliable sensory estimate. Calculating
Ehze weights w,, w;, to minimize the variance according to
% =0 yields a final estimate with maximal reliability

2 2
2 9y0h

ot = . 9
] )

Thereby, the optimal weights are only based on the single
modality variances

1. This model represents the Kalman filter for the fusion of two static
sources.

Stochastic selection:
Weighted sum of
distributions
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Fig. 3. Nontrivial integration processes of two sensory estimates: under
the weighted summation model, the perceptual system performs a
convolution of the underlying weighted distributions, which will be
Gaussian if the component distributions are Gaussian. Under the
stochastic selection model, the perceptual system draws an estimate
from one of the two distributions with a certain probability, producing a
non-Gaussian distribution of estimates. Both models lead to the same
mean value.
* __ 0}21 * 02

v
= wy = . (10)
v 9 2 h 2 2
o, + oy, oy + oy,

A resulting distribution from a weighted summation
process, in this case optimal fusion, is depicted in Fig. 3.

2.2.4 Stochastic Selection

A third basic way to deal with redundant information is to
randomly draw with a certain probability from either one of
the available sources. Hence, the distribution of the final
percept is equal to the weighted sum of the distribution
values provided by the sensory estimates. We call this
process stochastic selection among redundant information.
For a bimodal percept, the stochastic selection model is
described by

th ~ f = va(,uva UU) + whN(,Lth Uh)v

wy, +wp, = 1. (1)

The mean of the joint distribution is again a weighted
average

Lok = Wy fby + Wh - (12)

The variance is based on the variances of the single
modality estimates and on the conflict between the two
estimates, i.e., on the difference between the mean values

(13)

2 2 2 2
oy, = Wyo, + wyoy + wywp (L — py)”

The stochastic selection model can produce results consis-
tent with the outcomes of no fusion/confusion and
confusion. In the case of congruent bimodal information
(i.e., no distortion of one modality relative to the other),
1y, = by Maximum confusion occurs when the reliability of
the bimodal percept is equal to that of the less reliable
sensory estimate. Hence, fusion is not possible with this
model. A resulting distribution is depicted in Fig. 3.
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3 EXPERIMENT 1: ORDER OF INTEGRATION VERSUS
COMBINATION

To determine which of the process models illustrated in Fig. 2
applies to visual-haptic compliance perception, an experi-
ment was conducted with two conditions. In the first
condition, called active, participants made a perceptual
decision about the compliance of a virtual cube that was
explored by pushing the right thumb into its surface. The
resulting compliance information I, was

Ia = (x'ua Th, fva fh)‘

In the second condition, called resistive, participants made a
perceptual decision about the compliance of a virtual cube
that was pushed against the right thumb by the robot. This
condition was intended to eliminate haptic position cues
and visual force cues. The resulting information I, was then

1. = (x’uv fh)-

If Process Model 1 applies, and perceived compliance is
obtained first by unimodal estimates that are then integrated,
a compliance percept is possible for the active condition (14)
but impossible for the resistive condition (15). This is because
by lacking haptic distance and visual force cues neither a
haptic-only estimate S}, nor a visual-only estimate .S, can be
achieved. On the other hand, if Process Model 2 applies, a
reliable compliance percept is possible for both the active
condition (14) and the resistive condition (15), since the
perceptual system combines force and position information
irrespective of the modality they come from.

Since it was difficult to fully eliminate z, in the experiment
(see Section 3.1.3 for a detailed description of the stimuli), a
percept was possible in both conditions for both models but
presumably differed in the reliability. Hence, we predicted
the standard deviation o of the percepts, which inversely
correlates with the reliability. The hypotheses for the
experiment were then as follows:

If Process Model 1 holds, the standard deviation o of the
human sensor in condition (15) should be much larger than
in condition (14)

(14)

(15)

|

o, >> 0y, (16)

“_

where the indices “r” and “a” denote the resistive and the
active condition, respectively. The exclamation mark in-
dicates that this inequality must be true if the hypothesis
should not be falsified. If Model 2 holds, the perceptual
standard deviation for both conditions should not differ

!
Or R Og-

(17)

The latter prediction emerges from the assumption that the
additional information (xzp,f,) provided in the active
condition (14) is much less reliable, i.e., has a much larger
perceptual standard deviation, than the information (z,, f3),
which is provided in both conditions. Comparisons of JNDs
for visual and kinesthetic position sensing [21], [22], [23]
indicate that the visual estimation of the position z, has a
much smaller perceptual standard deviation than the haptic
estimation of the position (z;). (However, it should be noted
that some studies have found that the relative reliability of
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Visual Virtual Reality

TPosition

PC, Linux, RTAI
Matlab/Simulink

Haptic Task
Rendering Scheduling

Human System
Interfacg (HSI)

Fig. 4 Experimental set-up: the system consists of a HSI and real-time
processing unit. Positions and forces of the SCARA tool tip are
measured. The response box can be seen on the left.

vision and haptics is task dependent; visual position may be
particularly unreliable in the z-direction of the horizontal
plane [24], [25].) Furthermore, estimating force visually f,
should provide little additional information, since force
information must be inferred indirectly from visual cues,
which were not provided in our set-up. Hence, using the
additional information (zy, f,) should lead to no decrease or
only to a small decrease of the perceptual standard
deviation in the active condition compared to the resistive
condition (15), if Process Model 2 is applied.

3.1 Method

3.1.1 Visual-Haptic Virtual Reality

Hardware and Software: Haptic rendering of compliant objects
was obtained using a HSI comprising two self-made selective
compliance assembly robot arm (SCARA)-robots, a real-time
processing unit, a visual display, and a response box (see
Fig. 4). Participants grasped the end effectors of the two
SCARA robots between the index and thumb fingers and
squeezed them in order to estimate compliance. The SCARAs
were built using high fidelity components including Maxon
motors and Harmonic Drive gears enabling very precise
control of the interaction. The workspace is approximately
80 mm and the maximum force is approximately 50 N.
Position information was measured by angle encoders and
force was sensed by strain gauges attached to both robot
links. This information was recorded by a Sensoray626 DAQ-
card providing 16-bit resolution. Signal processing algo-
rithms were implemented as Matlab/Simulink models with
real-time code generated automatically. The system operated
at 1 kHz sampling frequency, and it was connected to a PC
running real-time application interface (RTAI) for Linux.
Measured positions were transferred to a second PC running
the visual VR programmed in Open Inventor. The grasped
object was rendered as a gray cube squeezed by two orange
spheres. The TFT screen used to display visual information
was frontoparallel (slanted by 40 degrees with respect to the
vertical direction) and mounted between the subject and the
SCARA robots. In this way, from the participant’s vantage
point, the fingers and the spheres squeezing the cube were
completely matched (see Fig. 5). During psychophysical
experiments, participants reported their answers using a
response box operated with their nondominant hand.
Dynamics and Control: The identical robots of the HSI are
controlled independently using the same control scheme.
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Fig. 5. Virtual stimuli: the haptic feedback renders a compliant cube to
be explored by thumb and index finger. Visually, the fingers are
represented by orange spheres.

The dynamics of the stimulus compliance is described by
the admittance S : force input — position output, which
represents compliance according to Hooke’s law z, = Sf,
where S [mm/N] is the compliance whose perception is
addressed in this study. The control concept employing
inner position control driven by a VR with force reference is
called admittance control. It is best suitable for rendering
nonrigid environments like compliant environments. Mini-
mum compliance (= maximum stiffness) that can be
rendered is S =0.14 mm/N. Due to the set-up, the
transparency of the system was nearly ideal and the
displayed dynamics S can be assumed to be equal to the
commanded stimulus S = S;.

3.1.2 Participants

Twenty (20) students of the Technische Universitat Miinch-
en took part in a single, 2-h session for pay. Participants had
an average age of 24 years and were naive to the purpose of
the study, although most were experienced psychophysical
observers.

3.1.3 Stimuli

The stimuli were visually rendered compliant cubes with
80-mm sides. The compliance of the standard stimulus was
Syes = 1.6 mm/N. Eight (8) congruent bimodal comparison
stimuli were implemented distributed among the standard
stimulus S =[0.7,1,1.2,1.4,1.8,2,2.2,2.4] mm/N.

In the active condition, stimuli were provided according
to (14). Participants could actively indent the virtual cube by
squeezing with the thumb against the index finger. The
index finger was fixed mechanically and the indentation
was only performed with the thumb (with a maximal
excursion of about 2.5 c¢cm). On the visual display,
participants saw an indentation tool (orange spheres)
indenting a virtual cube (a screenshot of both displays is
provided in Fig. 5).

In the resistive condition, stimuli were provided accord-
ing to (15). Haptically, participants were told to maintain
their thumb at a constant fixed position (index finger was
again fixed and no force was exerted on it) as the robot
pressed into their thumb, rendering the commanded
compliance. Visually, the cube was pressed into the sphere
that represented the thumb. Thereby, it decreased in size on
the index finger side. The orange sphere representing the
index finger remained at the same position. Since we had to

avoid visual force cues, the cube remained flat and did not
show a deformation curvature as in Fig. 5, when indented.
To avoid haptic position cues, participants were informed
by a beep if they moved their finger more than £5 mm from
the fixed position and data were discarded, but lesser
movements were possible. The cube trajectory was a sine-
wave with randomized amplitude (ranging from 0.5 cm and
2.5 cm) and period of 1.0 s. On the visual display,
participants saw the cube pressing/moving into their thumb
representation (orange sphere).

3.1.4 Procedure

The psychophysical function for discriminating compliance
was assessed by the method of constant stimuli. A two-
conditions within-subject design was used. The active and
resistive conditions were presented in different blocks that
consisted of 8 comparisons and 10 repetitions. The sequence
for each of the blocks was randomly chosen for each
participant. Participants sat in front of the HSI, looking at the
screen and grasping the device with their dominant hand.
After being instructed, participants were trained using a set
of stimuli which were not repeated in the experiment until
they felt confident they understood the task. In total, 2 x
20 = 40 psychophysical functions were recorded.

One trial consists of the sequential presentation of two
stimuli: a standard and a comparison stimulus. Participants
explored each stimulus as directed, active or resistive, to
assess their compliance of the two stimuli and reported
which of the two appeared more compliant. The duration of
each stimulus presentation was 2 s with an interstimulus
interval of 2 s. The next trial began 2 s after the answer was
given using the response box. Exploratory movements were
generally quite variable in amplitude even within a trial. No
systematic difference in exploration across the two condi-
tions was observed. After the experiments, the participants
judged the quality of the display and their immersion into
the virtual reality and stated them in a written report. This
was done to draw conclusions about the participants” ability
in combining and integrating the information presented by
our display.

3.1.5 Data Analysis

Psychophysical functions were fitted with a cumulative
Gaussian function using “psignifit” software, version 2.5.6,
described in [27] and Matlab/Simulink. The following
parameters were computed by fitting the psychophysical
function to the experimental data to describe the final percept
Syn: the point of subjective equality for the two conditions
and the control condition was computed as the stimulus level
at proportion 0.5 yielding PSE = F!(0.5), where Fy denoted
the cumulative Gaussian function. The just noticeable
difference for each condition (JND,, JND,) was computed
by taking the stimulus difference between PSE and propor-
tion 0.84, yielding JND = F;1(0.84) — PSE.

These empirical values are converted to theoretical
estimates of the mean perceptual estimate, or average
percept, and the variability around that estimate, as
follows: the mean perceptual estimate was measured by the
observed PSE

4= PSE. (18)
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Fig. 6. Perception of visual-haptic compliance in the active and the
resistive condition: shown for a sample participant are the experimental
data and the psychophysical function. Active perception (14) led to
better discrimination performance than resistive perception (15).

The perceptual standard deviation was calculated from the
observed JND, treating it as the JND of a reminder task
according to

o = V2JND, (19)

where the multiplier /2 represented the performance
correction for two-interval reminder tasks (method of
constant stimuli).?

3.2 Results

Discriminating compliance with our visual-haptic virtual
reality was found to produce psychophysical functions of
the expected shape. (The data of only one participant had to
be removed on this basis.) The data and the psychophysical
functions of a single participant are depicted in Fig. 6.
Participants’ subjective post-experimental reports con-
firmed that the display created an immersive experience
of the virtual object as a compliant cube, characterized by
both visual and haptic cues. Although the presentation of
the stimuli was quite abstract compared to real world
stimuli, participants appeared to have no difficulty in
treating the display as a compound visual-haptic stimulus.
A paired-sample t-test performed on the JNDs obtained
in the two conditions indicated that the JND in the resistive
condition was significantly larger than in the active
condition (#(18) = 3.32,p = 0.001 one-tailed). For the active
condition (14), the perceptual standard deviation o,
resulted in 046 mm/N (2891 percent relative to the
standard stimulus S,.;). For the resistive condition (15), o,
resulted in 1.32 mm/N (82.67 percent). The perceptual
standard deviation in the resistive conditions was 2.86 times
the perceptual standard deviation of the active condition.

3.3 Discussion

In general, the reliabilities of the compliance estimates were
smaller than the reliabilities for the perception of position

2. See [29], pp. 180-181 for a detailed description of the reminder
paradigm. The design was not a 2AFC; hence, the performance correction
was applied because participants were assumed to use a discrimination
strategy when comparing between standard and comparison stimulus. This
would be unnecessary with a decisionally separable strategy, where
participants would essentially memorize the standard stimulus. However,
given the complexity of the compliance percept, we assumed that
participants did not ignore the standard stimulus but processed it anew
on each trial.

information or force information as reported in the literature,
e.g., [11]. The large difference between the perceptual
standard deviations can be explained only by Process Model
1 according to (16). In this model, perception of compliance
involves combining nonredundant position and force in-
formation independently for each sensory modality, then
integrating the different compliance estimates. To be
effective, this process requires that each modality provides
both position and force information, as in the active
condition described above. These results raise the question
of whether Process Model 1 underlies performance because it
is advantageous from a processing perspective, relative to
Model 2. Certain advantages can be suggested. One is that
because Model 1 assumes the integration of independent
estimates, compliance values that are directly inferred from
other modalities or from experience can seamlessly be
incorporated into its structure. A second advantage is that
as each compliance estimate is sensor specific, the compli-
ance percept could be computed directly from the sensor
input. This allows for a more robust and less noisy
transmission of the information to higher levels of proces-
sing. (This kind of preprocessing is mandatory in electrical
measurement and signal processing.)

Our conclusion differs from the claim by Srinivasan et al.
[17], namely, that humans’ compliance percept is based “on
the relationship between the visual position information
and the indentation force sensed tactually” (p. 555).
However, their experiment was in principle not suited to
differentiate between the two ways to compute compliance
information described by the process models. The observa-
tion that participants’ ability to haptically perceive com-
pliance decreased, when conflicting visual position
information was provided concurrently, does not indicate
whether compliance was estimated separately for each
modality (Process Model 1) or whether visual and haptic
displacements were integrated before compliance was
estimated (Process Model 2).

The finding that compliance could be estimated to some
extent in the resistive condition, under the assumptions of
Process Model 1, can be explained by the fact that we did
not eliminate finger movements, i.e., haptic position cues
zp, smaller than +5 mm. Combined with haptic force
information fj, a haptic compliance percept was apparently
possible but had low reliability. In future work, it would be
valuable to directly measure the JNDs for haptic position
and visual force under the experimental conditions to assess
their potential contributions to compliance.

4 EXPERIMENT 2: VISUAL-HAPTIC INTEGRATION OF
COMPLIANCE INFORMATION

The results of the first experiment supported the hypothesis
that compliance perception is performed according to
Process Model 1; that is, integration of visual compliance
information and haptic compliance information takes place
only after the combination of force and position to produce
a modality-specific estimate of compliance. The second
experiment was designed to test Process Model 1 in more
detail. Specifically, it manipulated visual cues to position
and force, holding haptic cues constant, and used psycho-
physical evaluation to determine how visual distortions
affected the final compliance estimate. According to Process
Model 1, the visual channel should use the distorted cues to
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n—)-

Fig. 7. Visual force: to generate different visual forces f,, different
indentation tools were used. The metal tool had a large diameter and a
metal-colored surface. The wood tool had a small diameter and wooden-
colored surface.

arrive at a compliance estimate which is then integrated
with the haptic estimate.

In this experiment, we modified the visual position
information relative to the haptic by three ratios: 2,1,0.5
(used as subscripts in the following expressions), producing
conditions z,,, z, s,, and x, g, ,, respectively. Physically, the
upscaling of the participants’ finger movements (z,.s,) leads
to a higher compliance S, and shortening the indentation
(2v,5,5) leads to smaller visual compliance.

Furthermore, we attempted to manipulate the visual
cues to force by varying the visual indentation tool.
Cylinders instead of spheres were used to represent the
indentation tool in the visual VR. We varied their size and
surface appearance to simulate metal (subscript “M”) and
wood (subscript “W”), as depicted in Fig. 7. Using the wood
tool was expected to yield a higher compliance estimate
than using the metal tool, assuming that it implies that less
force is used to reach a given indentation.

Specific hypotheses about the changes in the mean and the
variability of the responses were formulated in the context of
a set of models, as described below. Here, we describe more
general hypotheses. For any level of visual cuing, integration
of S, with S}, i.e., confusion, suboptimal fusion, or optimal
fusion, is indicated by a weighted mean perceptual estimate

!
Hs,, = Whth + Wy My, S, 5 (20)

where m denotes the visual ratios of the different bimodal
conditions 0.5, 1, or 2. The subscripts h and v denote unimodal
haptic and visual information, respectively. Furthermore, the
weights sum to unity, wy, + w, = 1 and none of them is zero.
Hence, the mean bimodal perceptual estimate should not
shift for the congruent vision case, but should shift down-
ward for pug,, and upward for ug. Hence, assuming
integration, the mean perceptual estimates can be denoted as

! | !

Sy 5 < Hh = HSs, < JS (21)

Furthermore, if the compliance information is integrated
according to the optimal weighted summation model, the
perceptual standard deviations will be smaller in the
bimodal conditions. Hence, assuming optimal or suboptimal
fusion the perceptual standard deviations can be denoted as

!

08512 < Oh- (22)

4.1 Method

4.1.1 Visual-Haptic Virtual Reality
See the first experiment, Section 3.1, for details.

4.1.2 Participants

Twenty-three (23) students of the Technische Universitit
Miinchen took part in this study for pay and gave informed
consent. The average age was 24 years.

4.1.3 Stimuli

The stimuli were virtually rendered compliant cubes with
80-mm sides. Participants were able to squeeze the virtual
cube displayed by the HSI using two fingers. The haptic
compliance of the standard stimulus was S,.; = 0.7 mm/N.
This was considerably lower than in the first experiment to
accommodate the expected increase of the mean perceptual
estimate due to the visual distortions. The visual compli-
ance of the standard stimulus S, was defined by the three
ratios introduced above. Additionally, we presented a
unimodal condition with no visual information S, and
recorded the mean perceptual estimate p, and the percep-
tual standard deviation oy,

Furthermore, in the visual stimulus, the fingers were
represented not by orange spheres as in Experiment 1, but
by two cylinders. The cylinders were differently shaped and
colored as described above. In the first configuration, the
cylinders had a small diameter (1 cm) and the surface
resembled wood (denoted by the subscript “W”). In the
second configuration, the cylinders had a large diameter
(6 cm) and the surface resembled metal (denoted by the
subscript “M”). The conditions are depicted in Fig. 7.

Eight (8) congruent bimodal comparison stimuli were
distributed with the standard stimulus at the center of the
distribution S = [0.14,0.22,0.36,0.5,1,1.15, 1.3, 1.44] mm/N.

4.1.4 Procedure

As in the first experiment, the method of constant stimuli was
used to assess performance and a within-subject design was
used. Eight (8) conditions were tested, constituting the
combination of three levels of visual compliance, a haptic-
only control condition, and two levels intended to influence
the visual force f,. Each of 23 participants was tested in all
conditions. Hence, 4 x 2 x 23 = 184 psychophysical func-
tions were recorded. One trial consisted of the sequential
presentation of two stimuli: the standard and the comparison
stimulus. Duration of each stimulus presentation was 2 s
with an interstimulus interval of 2 s. The next trial began 2 s
after the answer was given by the response box. Participants
could elect to have a break whenever they wanted by not
answering. Each condition was presented in one block
consisting of the eight (8) comparison stimuli presented in
random order ten (10) times. Hence, 80 trials were necessary
to obtain a psychophysical function. The sequence of blocks
was randomly chosen for each participant.

Participants were seated in front of the HSI with their
dominant hand grasping the device and with the direction
of gaze essentially perpendicular to the screen. They were
carefully instructed according to the group to which they
were randomly assigned. A short training was completed
before the session started.

4.1.5 Data Analysis
See the first experiment, Section 3.1, for details.
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Fig. 8. Mean perceptual estimates as measured by the PSE, (18), with
error bars: the bimodal mean perceptual estimate shifted to lower
compliance when the visual indentation was half the haptic indentation
(condition S ;) and to higher compliance when the visual indentation
was twice the haptic indentation (condition S;). The effect of simulated
tool was consistent with the hypothesis that the metal tool would imply
larger visual force than the wood tool, but the difference was not
significant.

4.2 Results

As in the first experiment, psychophysical functions could be
fit to the data in all conditions. (The data of four participants
had to be removed, because they produced outliers in a
single condition.)

4.2.1 Analysis of the Mean Perceptual Estimate

First, we focus on the mean perceptual estimate p, as
measured by the PSE (18), to make an initial selection
among the three basic models explained in Section 2.2.
The changes of the mean perceptual estimate induced by
varying visual position and indentation tool information
are depicted in Fig. 8. A two-way repeated-measures
ANOVA was performed on the p-values obtained from
the individual fit of subjects’ responses, with factors
indentation tool (thick metal, thin wood) and visual cue
(Sh, Sos, Si, S2). There was a significant effect of visual
cue (F(3,54) =38.35, p<0.001), but the effect of the
indentation tool cue was not significant (F'(1,18) = 2.68,
n.s.), nor was the interaction (F(3,54) =0.23, n.s.). The
first finding confirmed that visual position information
influenced the bimodal percept, as would be predicted if
integration had occurred, according to (21). The second
result indicated that to the extent that force information
can be conveyed by simulated material and tool thick-
ness, it did not significantly influence the mean percep-
tual estimate, contrary to the hypothesis. After merging
the data of the indentation tool conditions, the average
values were py, = 0.68, pg,, = 0.56, us, =0.70, and pg, =
0.96 [mm/N].

A contrast was then used to test the specific hypotheses
that the bimodal mean perceptual estimate would increase
in direct proportion to the visual component of the
stimulus, and that the mean for unimodal haptics would
equal the mean for the congruent case (i.e., contrast weights
were —0.625, —0.125, —0.125, and 0.875 corresponding to
conditions Sy 5, Sp,, S1, and S5). The contrast showed that the
hypothesis accounted for more than 99 percent of the
ANOVA sum of squares for the visual-cue factor. Least
significant difference (LSD) tests were used to compare the
mean perceptual estimates across visual cues, and all means
that were predicted to differ according to the hypothesized

ordering (21) did differ significantly by this test (i.e., all
paired comparisons except for S, versus 51). Regarding the
different integration models introduced in Section 2.2, the
result of this test supports the weighted summation model
(6) and the stochastic selection model (11), which predict the
same results for the p-values, (7), (12). It is in contrast to the
predictions of the sensory capture model (5), since both
modalities were used.

Based on (20), the weights w,, w,, participants used to
integrate the bimodal information can be calculated (both
models provide the same equation for the mean perceptual
estimate). Two independent calculations can be performed
based on the data of each incongruent condition. (It is
mathematically not possible to calculate the weights for the
congruent condition, based on (20).) To specify the visual
mean perceptual estimates for the calculations, we assumed
a linear, unbiased transduction of the commanded visual
compliance (i.e., the commanded position change) to the
visual mean perceptual compliance estimate (see [30] for
the support of this assumption)

Hv,S,, = mSTefa (23)

where m = [0.5,1,2]. The calculated values for the visual
mean perceptual estimates are fi,s,, = 0.35 mm/N and
f,5, = 1.4 mm/N. Following (20), (23), the calculations of
the average visual weights for the incongruent conditions
according to

Hs,, — Hh

- , 24
eref — Hn ( )

Wy,S,,
converge on essentially the same result for both conditions:
for condition Sy 5, the average weights were calculated to be
w, = 0.36 and, therefore, w;, = 0.64 (note: w, + w; = 1). For
the condition 5, the average weights were calculated to be
w, = 0.37, and wy, = 0.63. Hence, the weights were found to
act “sticky”; thatis, they appeared to be set to a constant value
despite differences in the visual distortion across conditions.

4.2.2 Analysis of the Perceptual Standard Deviation

Second, to make a final decision between the two remaining
models, weighted summation (6) and stochastic selection
(11), we focus on the perceptual standard deviation as
measured by the JND, (19). The deviation is inversely
correlated with the reliability according to (4). The changes
of the perceptual standard deviation induced by visual
position and visual force information are depicted in Fig. 9.
The same ANOVA reported above for the p-values was
repeated on the o-values. It showed a significant effect of
visual position information (F'(3,54) =7.49, p < 0.001),
whereas the effect of the indentation tool information did
not reach significance (F(1,18) = 0.11, n.s.). Averaging data
over tool conditions, LSD tests were used to compare the
o-values obtained in the incongruent visual conditions with
the unimodal condition. These tests indicated that in the
bimodal condition S; the perceptual standard deviation was
greater than the unimodal S); the other comparisons of
unimodal versus Sj; and unimodal versus S; were not
significant. Finally, in pursuit of the models described
above, we did an LSD test for differences between the
o-values in the incongruent bimodal conditions; the o-value
for Syp5; was significantly less than for S;. Although the
analysis of the mean perceptual estimate, Section 4.2.1,
revealed that integration occurred in all bimodal conditions,
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Fig. 9. Perceptual standard deviation ¢ measured by recording the JND,
(19) with error bars: an effect of position information was found between
conditions S, and S, and between S; 5 and S,. An effect of visual force
information was not found.

optimal integration could not explain why the perceptual
standard deviation in condition S; was significantly greater
than in the unimodal condition. Therefore, hypothesis (22)
had to be rejected. As in the above analysis, the ANOVA did
not show an influence of the visual force conditions. After
merging these data, the average values were o) = 0.17,
os,; = 0.16, o5, = 0.13, and og, = 0.26 [mm/N].

To test the agreement of the models with the experi-
mental data and the effects reported by the ANOVA, we
used the equation of each model that defines the perceptual
standard deviation. First, we calculated the visual standard
deviation from the experimental data.

Considering stochastic selection, (13), the visual percep-
tual standard deviation can be identified by calculating

A 0—?97,7 — (1 B w’U)UlgL - (1 - w’v)wv(ﬂr - /rbh)2
0,8, = o .
v

(25)

In this equation, the average values were used and the
visual weight w, = 0.37 was derived from the p-data. The
term that represents the mean difference in (13) dropped
out, since in condition S, the visual and haptic stimuli were
physically congruent, and the equivalence of the p-values
indicated that they were perceptually equivalent. The
prediction is indicated by a hat ".

Based on this calculation, the stochastic selection model
was ruled out, since in all conditions the visual perceptual
standard deviation was imaginary. This result was caused
by the argument of the square root in (25) (the visual
perceptual variance) taking on a negative value. To test that
the negative values were statistically reliable, we conducted
both parametric (95 percent confidence interval) and
nonparametric (binomial) tests on the variances derived
from individual subject data. These confirmed that with the
stochastic-selection model, the argument of the square root
is significantly less than zero for the conditions Sy 5 and S>
(the test for S; did not exclude a positive value). Further
examination of (25) suggests why the imaginary values for
the unimodal visual standard deviation are obtained under
stochastic selection: the greater the pu-difference (the
bimodal conflict), the greater the bimodal perceptual
standard deviation must be in order for the argument of
the square root to remain positive. In general, the stochastic
selection model predicts a bimodal perceptual standard

deviation that is too large in comparison to our experi-
mental data, for the situations with intersensory conflict.

Next, consider the weighted summation model accord-
ing to (8). The visual standard deviation is given by

N \/a?’,‘m - ((1- wv)gh)Q
Uv,Sm = .

2
w?

(26)

For this calculation, the same average parameters were used
as in the test of the stochastic selection model reported
above. The predicted values for the mean visual standard
deviation were calculated to be 6, 5,, = 0.32 mm/N, 6,5, =
0.22 mm/N, and 6,6, = 0.64 mm/N. All values are real
numbers. All values are within a plausible range for a visual
perceptual standard deviation for compliance, between
[0.22 — 0.64] mm/N. The visual perceptual standard devia-
tion for the condition S; is greater than the visual
perceptual standard deviations for Sy 5 and Si. (A compar-
ison between Sy 5 and S5, is not allowed, since the ANOVA
did not report a significant difference between the bimodal
perceptual standard deviations.)

Assuming optimal fusion, it is now possible to derive the
weights for all three conditions using (10). For condition
So.s, the average weights were calculated to be w) = 0.22
and, therefore, wj =0.78 (* indicates optimality). For
condition S;, the average weights were calculated to be
w) = 0.37, and wj = 0.63. And for condition S,, the average
weights were calculated to be w; = 0.07, and wj = 0.93. The
weights so derived for the congruent condition S; proved
to be essentially the same as the weights identified in
Section 4.2.1 for the incongruent conditions. Hence,
together with the results of Section 4.2.1, we found that
three independent estimates of the weights converged to
essentially the same values, further supporting the concept
of sticky weights. That is, the weight set for the congruent
condition is maintained in the incongruent conditions. The
implication is that participants integrated optimally in the
congruent condition S;. However, integration was sub-
optimal, or even confused participants in the incongruent
conditions, because their weights remained sticky and
consequently were not optimal.

Based on the foregoing analysis, it is possible to predict
the bimodal standard deviations at all possible weights
(visual weight between [0, 1]) according to

&S,,, = \/(mwv&?:,&)Q + ((1 - wq:)ah)27

where m = [0.5, 1, 2]. The result is depicted in Fig. 10. It can
be seen that the weighted summation model predicts
parabolas whose minima (optimal percepts) are defined
by the unimodal standard deviations. The greater the
difference between the unimodal standard deviations, the
smaller the difference between the optimal bimodal
standard deviation (minimum) and the smallest unimodal
standard deviation, as can be seen for the prediction of the
incongruent condition S;. Consequently, if humans were to
fuse optimally, in highly incongruent conditions their
perception would resemble the sensory capture model,
ie., integration would break down. However, since they
stick to the weights that lead to an optimal percept in the
congruent case, they cannot be optimal in the incongruent
conditions, given that integration occurs.

(27)
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Fig. 10. Predictions of the weighted summation model (6) using
measurements and the predictions for the visual perceptual standard
deviations, according to (27): the model predicts parabolic curves with a
minimum (optimal integration). As can be seen by the gray-shaded
areas, fusion would be constrained to a rather small area if the unimodal
standard deviations differ substantially. The largest fusion area would be
obtained if the two unimodal standard deviations were equal. Outside
the fusion area, observers were confused by the integration of the two
sources of information.

4.3 Discussion

The influence of visual compliance information on the final
compliance percept was analyzed in an experiment with
conditions varying the visual compliance by changing
visual position and visual force. Visual force was varied
by depicting the visual VR with either thin wooden or thick
metal tools. A stiffer cube was expected to be reported for
the thick metal tool, and although the trend was as
predicted, the effect of tool appearance on the bimodal
mean perceptual estimate did not reach significance. A
more compelling visual rendering might be more effective.

Visual position was varied by doubling and by halving
the movement of the fingers. When visual indentation
doubled, perceived compliance increased compared to
unimodal, whereas if visual position information, i.e.,
visual indentation, halved, perceived compliance de-
creased. Congruent visual position information produced
the same mean perceptual estimates for compliance as in
the unimodal case. Hence, it can be concluded that visual
compliance information is integrated with haptic compli-
ance information into a bimodal compliance percept.

Further analysis focused on evaluating models of the
integration mechanism. The data analysis supported the
weighted summation of random variables (6) as the under-
lying process for visual-haptic compliance perception.
Independent estimates of the weights in three different
conditions were found to converge on essentially identical
values. The data ruled out models that assumed only a
single modality was considered, either across the experi-
ment or stochastically, trial by trial. The weighted summa-
tion model closely predicted the average percept p in all
three conditions. Furthermore, it predicted successfully that
the perceptual standard deviation in bimodal conditions
can be larger than the unimodal, even if integration
occurred (confusion). The model further specified that
integration in the congruent condition was optimal, but
not in the incongruent conditions.

Taken as a whole, these results are inconsistent with
optimal fusion (9) as a generally applicable model for
compliance. Instead, the weighted summation model,
which subsumes the optimal fusion model as a special
case, provides a more general paradigm for the integration
of visual-haptic compliance information. Depending on the
weights, it predicts optimal fusion, suboptimal fusion, and
confusion (bimodal standard deviation greater than one of
the unimodal deviations). The tendency toward invariant,
i.e., sticky weights, likely reflects long-term experience in
congruent (i.e., real world) environments. In general, the
weights encode how much information a certain modality
can contribute to a multimodal percept, ie., a weight
represents the reliability of a certain sensor estimating a
certain environmental property. Participants on average
adopt weights that lead to an optimal percept in congruent
situations. However, they cannot adapt their weights when
visual information is incongruent with haptic, if they lack
experience of the incongruent situation. This leads to
suboptimal fusion or even to confusion.

5 CONCLUSION

The experiments lead to a model in which each modality
combines nonredundant position and force information to
estimate compliance, following which the estimates are
integrated by a weighted summation process. The first
experiment (Section 3) ordered the component processes as
combination first, and then integration. The second experi-
ment (Section 4) provided evidence that the general under-
lying process of bimodal compliance integration is the
weighted summation model (6), which contains the optimal
fusion model (9) as a special case. Further, the mean data
from Experiment 2 suggest that the weights are set to
optimal values for congruent visual/haptic inputs and then
remain resistant to change, and hence nonoptimal, when
the visual input is distorted relative to the haptic.

Although the present work enhances our understanding
of visual-haptic compliance perception, questions still re-
main about the generality of the present model. Experiment 1
indicates that observers cannot combine reliable position and
force cues from different modalities into a compliance
estimate, suggesting that the weighted-summation model
applies to redundant, but not independent, cues. Moreover,
previous work using a matching task indicated that observers
could ignore discrepant visual compliance information [18],
indicating that integration might be task dependent. Further
research is needed to determine how weighted summation
applies to the perception of other environmental properties,
such as position, viscosity, volume, etc. Another question that
needs further investigation is how the weights given by
participants to the two sources of information are assigned
and whether they can be varied with experimental manipula-
tions as in [7].
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