
CHAPTER 12

Multisensory Perception: From Integration
to Remapping

Marc O. Ernst and Massimiliano Di Luca

INTRODUCTION

The brain receives information about the
environment from all the sensory modalities,
including vision, touch, and audition. To
interact efficiently with the environment, this
information must eventually converge to form a
reliable and accurate multimodal percept. This
process is often complicated by the existence
of noise at every level of signal processing,
which makes the sensory information derived
from the world unreliable and inaccurate. We
define reliability as the inverse variance of
the probability distribution that describes the
information a sensory signal contributes to
the perceptual estimation process. In contrast,
accuracy is defined as the probability with
which the sensory signal truly represents the
magnitude of the real-world physical property
that it reflects. In other words, it is inversely
related to the probability of a sensory signal
being biased with respect to the world property.
There are several ways in which the nervous
system may minimize the negative consequences
of noise in terms of reliability and accuracy.
Two key strategies are to combine redundant
sensory estimates and to use prior knowledge.
There is behavioral evidence that the human
nervous system employs both of these strategies
to reduce the adverse effects of noise and thus to
improve perceptual estimates.

In this chapter, we elaborate further on how
these strategies may be used by the nervous

system to obtain the best possible estimates
from noisy signals. We first describe how
weighted averaging can increase the reliability
of sensory estimates, which is the benefit of
multisensory integration. Then, we point out
that integration can also come at a cost of
introducing inaccuracy in the sensory estimates.
This shows that there is a need to balance
the benefits and costs of integration. This is
done using the Bayesian approach, with a joint
likelihood function representing the reliability
of the sensory estimates (e.g., ŜV and ŜH , for
visual and haptic sensory estimates) and a
joint prior probability distribution providing
the co-occurrence statistics of sensory signals
p(SV , SH ), that is, the prior probability of
jointly encountering an ensemble of sensory
signals derived from the world. This framework
naturally leads to a continuum of integration
between fusion and segregation. We further
show how this framework can be used to
model the breakdown of integration by having
the joint prior conditioned on multisensory
discordance (i.e., a separation of the sensory
signals in time, space, or some other measure
of similarity). If the multisensory signals differ
constantly over a period of time, because they
may be consistently inaccurate, recalibration of
the multisensory estimates will be the result. The
rate of recalibration can be described using a
Kalman-filter model, which can also be derived
from the Bayesian approach. We conclude by

224



MULTISENSORY PERCEPTION 225

proposing how integration and recalibration
can be jointly described under this common
approach.

MULTISENSORY INTEGRATION

For estimating a specific environmental prop-
erty, such as the size of an object in the
world SW , there are often multiple sources of
sensory information available. For example, an
object’s size can be estimated by sight and touch
(haptics), SV and SH . Typical models of sensory
integration assume unbiased (accurate) sensory
signals (i.e., SV = SH ) with normally distributed
noise sources that are independent, a situation
in which sensory integration is beneficial (see
Chapter 1; Landy, Maloney, Johnston, & Young,
1995). For the estimation of an object’s size from
vision and touch, the assumption of independent
noise sources is likely to be true since most of
the neuronal processing for sensory signals, that
is, their transmission from sensory transducers
to the brain, is largely independent. As was
introduced in Chapter 1, Figure 12.1 illustrates
the optimal mechanism of sensory combination
given these assumptions and given that the goal is
to compute a minimum-variance estimate. This
can be considered the standard model of sensory
integration. The likelihood functions represent
two independent estimates of size, the visual
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Figure 12.1 Schematic representation of the
likelihood functions of the individual visual and
haptic size estimates ŜV and ŜH and of the combined
visual-haptic size estimate ŜVH , which is a weighted
average according to Eq. 12.1. The variance
associated with the visual-haptic distribution is less
than either of the two individual estimates (Eq.
12.3). (Adapted from Ernst & Banks, 2002.)

size estimate ŜV and the haptic size estimate ŜH ,
based on sensory measurements (zV , zH ) that are
corrupted by noise (with standard deviations σV

and σH ). The integrated multisensory estimate
ŜVH is a weighted average of the individual
sensory estimates with weights wV and wH that
sum up to unity (Cochran, 1937):

ŜVH = wV ŜV + wH ŜH , where wV + wH = 1.
(12.1)

To achieve optimal performance, the cho-
sen weights need to be proportional to the
reliability r , which is defined as the inverse of
the signal variance:

wj = rj
∑

i

ri

, with ri = 1

σ 2
i

. (12.2)

The indices i and j refer to the sensory
modalities (V , H ). The modality that provides
more reliable information in a given situation
is given a higher weight, and so has a greater
influence on the final percept. In the example
shown in Figure 12.1, visual information about
the size of the object is four times more
reliable than the haptic information. Therefore,
the combined estimate (the weighted sum) is
“closer” to the visual estimate than the haptic one
(in the present example the visual weight is 0.8
according to Eq. 12.2). In another circumstance
where the haptic modality might provide a
more reliable estimate, the situation would be
reversed.

Given this weighting scheme, the benefit of
integration is that the variance of the combined
estimate from vision and touch is less than that
of either of the individual estimates that are
fed into the averaging process. Therefore, the
combined estimate arising from integration of
multiple sources of independent information
shows greater reliability and diminished effects
of noise. Mathematically, this is expressed by
the combined reliability r being the sum of the
individual reliabilities:

r =
∑

i

ri . (12.3)
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Given that all estimates are unbiased, this inte-
gration scheme can be considered statistically
optimal, since it provides the lowest possible
variance of its combined estimate. Thus, this
form of sensory combination is the best way to
reduce uncertainty given the assumptions that
all estimates are accurate and contain Gaussian-
distributed, independent noise (Chapter 1).
Even if the noise distributions of the individual
signals displayed a correlation, averaging of
sensory information would still be advantageous
and the combined estimate would still be more
reliable than each individual estimate alone
(Oruç, Maloney, & Landy, 2003).

Several studies have tested this integra-
tion scheme empirically (e.g., Gharahmani,
Wolpert, & Jordan, 1997; van Beers, Sittig, &
Denier van der Gon, 1998, 1999). In 2002,
Ernst and Banks showed that humans integrate
visual and haptic information in such a
statistically optimal fashion. It has further been
demonstrated that this finding of optimality
also holds across and within other sensory
modalities, for example, vision and audition
(e.g., Alais & Burr, 2004; Hillis, Watt, Landy, &
Banks, 2004; Knill & Saunders, 2003; Landy &
Kojima, 2001). Thus, weighted averaging of
sensory information appears to be a general
strategy employed by the perceptual system to
decrease the detrimental effects of noise.

If redundant sources of sensory information
are absent or if the noises of these sources
are perfectly correlated, averaging different
estimates is not an option to reduce noise.
However, because the world is structured quite
regularly, the nervous system can use prior
knowledge about such statistical regularities
to reduce the uncertainty and ambiguity in
neuronal signals. Prior knowledge can also
be formalized as a probability distribution in
a manner similar to that for sensory signals
corrupted by noise. For example, let us consider
the distribution of velocities for all objects.
While some objects in our environment do move
around occasionally, from a purely statistical
point of view, on average most objects are likely
to remain stationary at most times, that is,
the velocity of an object is most likely to be
zero. Thus, a reasonable probability distribution

describing the velocity of all objects is centered at
zero with some variance (Stocker & Simoncelli,
2006; Weiss, Simoncelli, & Adelson 2002).
This prior knowledge can be combined with
unreliable sensory evidence in order to minimize
the uncertainty in the final velocity estimate. If
all the probability distributions are Gaussian,
using Bayes’ rule it is possible to derive that
the combined posterior estimate (the maximum
a posteriori or MAP estimate) is a weighted
average as well; however, now it is a weighted
average between the prior and the likelihood
function, that is, the sensory evidence:

ŜMAP = wlikelihood Ŝlikelihood + wprior Ŝprior (12.4)

The reliability of the MAP estimate then is given
by:

rMAP = rlikelihood + rprior . (12.5)

The principles of weighted averaging and the
use of prior knowledge can be combined and
placed into a larger mathematical framework
of optimal statistical estimation and decision
theory, known as Bayesian decision theory
(Chapter 1; Mamassian, Landy, & Maloney,
2002). This approach is illustrated in Figure 12.2
in the context of the action-perception loop.
Psychophysical experiments have confirmed that
at least some aspects of human perception and
action that deal with noise and uncertainty can
be described well using this Bayesian framework
(e.g., Adams, Graf, & Ernst, 2004; Kersten,
Mamassian, & Yuille, 2004; Körding & Wolpert,
2004; Stocker & Simoncelli, 2006).

THE COST OF INTEGRATION

While weighted averaging of sensory measure-
ments or use of prior knowledge has the benefit
of reducing noise and uncertainty in perceptual
estimates, it also incurs a potential cost. The
cost is the introduction of potential biases into
perception. Biases can occur, for example, when
the sensory estimates (ŜV and ŜH ) as defined
by the likelihood functions and thus sensory
signals (SV and SH ) do not accurately represent
the physical stimuli (SWV

and SWH
). Accuracy of
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Figure 12.2 The action/perception-loop schematically illustrates the processing of information according
to Bayesian decision theory. Multiple sensory signals are averaged during sensory processing and then
combined with prior knowledge, to derive the most reliable, unbiased estimate (posterior) that can be used
in a task that has a goal as defined by a gain or loss function. (Adapted from Ernst & Bülthoff, 2004.)

the sensory estimates was one of the assumptions
made in the previous section for deriving
the optimal integration scheme (Chapter 1).
However, if the estimates are no longer accurate
due to external or internal influences on the
signals, the potential cost of biases has to be
considered.1 Examples of sources of inaccuracies
in signals may be muscle fatigue, variance in grip
posture, or wearing gloves. Additionally there
might be glasses that distort the visual image
and so affect visual position estimates, or effects
of temperature or humidity that affect sound

1Throughout the paper we are only considering
additive biases, although the general scheme can be
extended to other forms of biases, for example,
multiplicative biases.

propagation and thus affect auditory estimates,
to name just a few. Figure 12.3A illustrates
some examples of processes that might affect
the accuracy of visual-haptic size estimates. The
top panel shows sensory signals (SV and SH ) that
are accurate with respect to the world property
SW (so SW = SWV

= SWH
= SV = SH ) to be

estimated (i.e., the size of the object at a specific
position), followed by three examples of SV and
SH signals that are inaccurate and contain an
additional bias B (i.e., SV = SWV

+ BV and
SH = SWH

+ BH ). For now we assume that the
signals are derived from the same location, so
the visual and haptic sizes to be estimated are
identical: SW = SWV

= SWH
.

If the sensory signals SV and SH , and hence
the sensory estimates derived from these signals,
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Figure 12.3 (A) Visual and haptic size signals SV and SH measured near the same location on an object at
which the true size is SW . In this case visual and haptic sizes are identical (SWV

= SWH
). The sensory signals

can be corrupted by various disturbances, which affect their accuracy, such as different grip postures, glasses,
or gloves. (B) Visual and haptic size signals SV and SH derived from locations on an object in close proximity
(offset horizontally by �x). In this case visual and haptic sizes may differ slightly (SWV

�= SWH
). Thus, the

visual and haptic size signals will also differ slightly due to variations in the shape of the object. However,
in general there will still be a correlation between the SV and SH signals as the object’s size varies smoothly.
Most probably this correlation will decrease with increasing �x. In both cases, the lower panel labeled (SV ,
SH )–distribution provides the co-occurrence statistics of the signal values SV and SH that build the basis for
the prior used for multisensory integration.
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ŜV and ŜH ,2 are inaccurate, that is, if they are
biased by B = (BV , BH ) with respect to the
world property SW or with respect to each other
(sensory discrepancy D = SV − SH = (SW +
BV ) − (SW + BH )), their respective values need
not necessarily agree even when they are derived
from the same location (SW = SWV

= SWH
). In

such a case, weighted averaging of the estimates
derived from these biased signals will inevitably
also bias the combined estimate. To avoid the
cost of biased estimates, the perceptual system
must be able to infer how accurate the signals
are. This is a difficult problem that cannot be
determined directly from the sensory estimates,
because these estimates do not carry information
about their own accuracy. Reliability, on the other
hand, which is the inverse variance associated
with the estimates, can be directly assessed
from sensory measurements. Furthermore, the
mere existence of a discrepancy between sensory
estimates D̂ = ŜV − ŜH does not reveal whether
some of the estimates are inaccurate, because

2Variables with a hat always denote noisy
sensory estimates, whereas variables without a hat
represent world signals from which the sensory estimates
are derived.

even when they are accurate, the presence of
noise in the estimation process will cause the
respective peaks of their likelihood functions to
disagree slightly (as illustrated in Fig. 12.1). We
will discuss later in the chapter how persistently
biased estimates may be avoided through the
process of recalibration.

A problem regarding potential biases also
exists while using prior knowledge to reduce
perceptual uncertainty. If the prior probability
distribution does not accurately describe the
statistics of the current environment and if
the mean of the prior distribution differs from
the mean of the sensory measurements, it will
introduce a bias in the final perceptual estimates.
Evidence for this phenomenon can be found
in several perceptual illusions, for instance, the
one illustrated in Figure 12.4. Both pictures
show footprints in the sand. However, most
people see the left image as an indentation in
the sand, whereas they see the right image as
if it were embossed or raised from the surface.
The reason for this counterintuitive perception
is the inherently ambiguous nature of the image
and the need to make certain prior assumptions
in order to interpret it (Rock, 1983). The prior
assumption we make in this case is that the light

Figure 12.4 Effect of the light-from-above prior on perception using ambiguous images. The left and right
images show footprints in the sand. In the left image the light illuminating the scene is actually coming
from above, and the footprint is correctly seen as an indentation. In the right image, which is the left
image presented upside down, the light is coming from below. Employing the light-from-above prior in
this situation causes the footprint to be seen as embossed or raised from the surface.
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source in the image is placed above the surface
(Brewster, 1826; Mamassian & Goutcher, 2001).
The assumption reflects our common world
experience of always having artificial or natural
light from above (Dror, Willsky, & Adelson,
2004). In the illustration, this assumption is
only correct for the left image. The illusion
arises when one views the right image. In
the right image the footprints are actually
illuminated from below. Thus, making prior
assumptions about light from above, that is,
using an inappropriate prior for the current
situation, forces our perception toward a bias
that causes us to see the footprints raised from
the surface.

To interact successfully with the environment
in order to, say, point to an object, the goal of
the sensorimotor system must be to derive accurate
estimates for the motor actions to be performed.
For example, we might wish to interact with
the environment by touching one of the toes
of the footprints shown in Figure 12.4. Evoking
an inappropriate prior will introduce a bias into
the inferred depth used for pointing. That is, in
the right part of Figure 12.4 we would wrongly
point to the illusory perceived embossed toe
instead of the actual imprinted toe (Hartung,
Schrater, Bülthoff, Kersten, & Franz, 2005).
Therefore, biases such as those discussed earlier
are undesirable and should be avoided. This,
in turn, predicts that multisensory integration
must break down with an increase of conflicting
information between the multisensory sources.
For this reason prior knowledge should be
disregarded if it is evident that the sensory
information is derived from an environment
with statistical regularities that conflict with
those represented by the prior probability
distributions. There is experimental evidence
to back up both these claims, which will be
discussed next.

As indicated earlier, there are many percep-
tual illusions that arise because prior assump-
tions bias the percept. Another example is the use
of prior knowledge about symmetry or isotropy
in visual slant perception (Palmer, 1985). When
asked for the three-dimensional interpretation of
an ellipse, humans consistently see the ellipse as
a circle slanted in depth. This perceptual effect

is explained using a prior for symmetry which
when evoked interprets the ellipse as a circle.
This may make sense because, considering the
statistics of our world, we are more likely to
encounter circles than ellipses. Therefore, under
these statistical considerations, for the unlikely
event that the ellipse is really an ellipse, this
prior will give rise to a biased percept. Knill
(2007a) showed that we down-weight such prior
knowledge for seeing circles if we are placed
in an environment where ellipses or irregular
shapes occur more frequently. This is consistent
with the idea that we begin to ignore the prior
when there is statistical evidence against the
symmetry assumption. As a consequence, this
strategy saves us from acquiring biases based on
false prior assumptions. Along the same lines,
Adams et al. (2004) showed that the light-from-
above prior (as demonstrated in Fig. 12.4) adapts
when observers are put in an environment where
the light source is placed predominantly to the
left or right, instead of above.

There is also empirical evidence for biases in
multisensory perception and for the breakdown
of multisensory integration with large discrepan-
cies between the sensory estimates. For example,
multisensory integration has been studied
experimentally by the deliberate introduction of
small discrepancies between sensory signals such
that the perceptual consequences of integration
are evident in a bias resulting from weighted
averaging; a method termed “perturbation
analysis” (Young, Landy, & Maloney, 1993).
Some notable demonstrations of multisensory
biases induced by weighted averaging include
shifts in perceived location (Alais & Burr, 2004;
Bertelson & Radeau, 1981; Pick, Warren, & Hay,
1969; Welch & Warren, 1980), perceived rate of
a rhythmic stimulation (Bresciani, Dammeier,
& Ernst 2006, 2008; Bresciani & Ernst, 2007;
Bresciani et al., 2005; Gebhard & Mowbray, 1959;
Myers, Cotton, & Hilp, 1981; Recanzone, 2003;
Shams, Kamitami, & Shimojo, 2002; Shipley,
1964; Welch, DuttonHurt, & Warren, 1986), or
perceived size (Ernst & Banks, 2002; Helbig &
Ernst, 2007). With larger experimentally induced
discrepancies between the perceptual estimates,
however, the integration and weighted averaging
process breaks down (Knill, 2007b). Integration
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breaks down even more rapidly if there is
additional evidence that the sources of infor-
mation do not originate from the same object
or event. For example, Gepshtein, Burge, Banks,
and Ernst (2005) showed that visual and haptic
size integration breaks down rapidly if the visual
and haptic information do not come from the
same location. That is, location information
is used in addition to determine whether to
integrate the size estimates. Several studies have
shown this breakdown of integration with spatial
discordance in a similar way (Jack & Thurlow,
1973; Jackson, 1953; Warren & Cleaves, 1971;
Witkin, Wapner, Leventhal, 1952; but see also
Recanzone, 2003). The breakdown also happens
with temporal discrepancies (e.g., Bresciani et al.,
2005; Radeau & Bertelson, 1987; Shams et al.,
2002; van Wassenhove, Grant, & Poeppel, 2007).
This breakdown of integration with increasing
discordance in space and time defines the spatial
and temporal windows of integration. It is
more generally referred to as robustness of
integration.

We have now identified two competing goals
of the perceptual-motor system: the first goal,
discussed in the previous section, was to achieve
the most reliable estimates possible; the second
goal, discussed in this section, was to avoid
inaccuracy of the estimates, that is, to achieve
the most accurate estimates. To maximize the
gain from integration, these two competing goals
must be best balanced. For this the precision
(reliability) and accuracy of the sensory estimates
has to be known to the system. As mentioned
earlier, reliability can in principle be determined
online from analyzing the estimates. However,
there is no direct information in the sensory
signals or estimates that would allow one to
determine their accuracy. In the following we
will therefore concentrate on the question of how
the brain determines whether sensory signals
and estimates are accurate, whether there is
a discrepancy between the sensory estimates,
and so whether to integrate. The same question
arises for the use of prior knowledge as well
and whether it conforms to the statistics of the
present environment. To keep matters simple,
however, from now on we will concentrate on
the first question.

BALANCING BENEFITS
AND COSTS

Whether to integrate different multisensory
estimates depends on the presence of an actual
difference D between the multiple sensory
signals. The perceptual system, however, does
not have direct access to the sensory signals but
only to the estimates derived from these signals.
Thus, to estimate what constitutes an actual
difference D between the signals is a question
that is itself shrouded in uncertainty because of
the noise in the estimation process. That is, when
we make estimates D̂ of sensory discrepancies,
we are unable to do so reliably because of the
noise in such estimates (see Wallace et al., 2004).
For this reason, it is practically impossible to
determine an absolute threshold for whether to
integrate. Every time a discrepancy is detected
between two estimates, the perceptual system
must determine (either implicitly or explicitly)
the reason for such a discrepancy. If the
discrepancy D̂ arises from random noise in
the processing of the neuronal signals, the
discrepancy changes randomly from trial to trial.
In this case, by integrating the two estimates,
the perceptual system could average out the
influence of such noise as shown in the beginning
of this chapter. However, if the discrepancy
in the estimates D̂ were due to a systematic
difference D between the signals, then the best
strategy would require the perceptual system to
not integrate the multisensory information. This
may occur, for example, in a scenario where
the sensory signals to be combined show some
inaccuracy (in form of an additive bias B) with
respect to the world (i.e., SV = SWV

+ BV or
SH = SWH

+ BH ), or with respect to one another
(i.e., D = SV − SH ). Figure 12.3A illustrates this
with a few examples showing how the sensory
signals (SV and SH ) may become inaccurate with
respect to the world property SW = (SWV

, SWH
)

to be estimated. As a consequence, determining
the reason for the discrepancies in the sensory
estimates is a credit-assignment problem with
two possibilities: The reason for the discrepancy
could either be a difference between the signals
or a random perturbation as a result of noise,
where both possibilities are uncertain. Since both
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possibilities are plausible and have associated
uncertainty, the optimal strategy would be to
use them both and weight each according to its
relative certainty. We call this optimal because it
balances the benefit of multisensory integration
while minimizing the potential costs associated
with it. This intuitive concept forms the basis
of a model that we discuss further in the next
section.

MODELING FUSION, PARTIAL
FUSION, AND SEGREGATION

To summarize, no matter how small it may be,
a discrepancy always exists between perceptual
estimates derived from different signals (D̂ =
ŜV − ŜH ). Such discrepancies could either be
caused by random noise in the estimates (with
standard deviations σV and σH ), which is
unavoidable and always present, or it could be
caused by a systematic difference D in magnitude
between the sensory signals. To make the best
possible use of such discrepant information,
the brain must use different and antithetical
strategies for random noise and systematic
difference. Information should be fused if the
discrepancy was caused by random noise in
the estimates, and it should be segregated if the
discrepancy was caused by an actual difference in
the signals. Interestingly, the very determination
of the source of the discrepancy, random or
systematic, is itself uncertain and difficult to
estimate and so the reason for any discrepancy
can only be determined with uncertainty. Thus,
the best solution to model such a process is to
use a fully probabilistic approach.

While our nervous system is capable of
processing many complex signals and sources
at once, we try to keep matters simple here
by considering a discrepancy between only two
estimates, each of which represents a property
SW = (SWV

, SWH
) specified by sensory signals

S = (SV , SH ). Thus, it is reasonable to think of
the integration process in a 2D space (Fig. 12.5),
although the problem can be extended easily to
higher dimensions. We now continue with the
example we used earlier (Eq. 12.1) in which
visual and haptic estimates are combined to
determine the size of an object SW = (SWV

, SWH
)

with SWV
= SWH

. Let S = (SV , SH ) be the sensory
signals derived from the world SW = (SWV

, SWH
),

which may be biased (B = (BV , BH ); Fig. 12.3)
with respect to some world property or with
respect to one another, and let z = (zV , zH )
be the sensory measurements derived from S.
Both the visual and haptic measurements are
corrupted by independent Gaussian noise with
variance σ 2

i , so zi = Si + εi with i referring to the
individual sensory modality (V , H )3. With these
assumptions, the joint likelihood function takes
the form of a Gaussian density function:

p(z |S)=N (Ŝ,�z) with �z =
(

σ 2
V 0
0 σ 2

H

)

,

(12.6a)

which is a bivariate normal distribution with
mean Ŝ = (ŜV , ŜH ) = (zV , zH ) (i.e., the
maximum-likelihood estimates of the sensory
signals equal the noisy measurements) and
covariance matrix �z (left column in Fig. 12.5).

The likelihood function represents the sen-
sory measurements on a given trial. The goal
of this task will be the estimation of a property
of the world, such as SW , while taking into
account both sensory imprecision (due to
random noise) and inaccuracy (additive bias).
In the rest of this chapter, we will develop a
Bayesian model of this process that proceeds
in two steps. In the first stage, discussed in
this section and the next, we describe how
the observer can use Bayes’ rule to calculate
a posterior distribution of the sensory signals
given the noisy measurements, P(SV , SH |zV , zH ),
and MAP estimates of those sensory signals,
ŜMAP , that take into account prior knowledge of
the correlations between the signals, p(SV , SH ).
In subsequent sections, we describe how the
observer can use prior knowledge of the likely
inaccuracy in each modality (BV , BH ) along with
current estimates of the discrepancy between

3As previously, we assume the visual and haptic
estimates are normally distributed and statistically
independent. Oruç et al. (2003) and Ernst (2005) describe
an analysis of how such a system behaves in case the
estimates are not independent and how this may give rise
to negative weights.
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Figure 12.5 The combination of visual and haptic measurements with different prior distributions. (Left
column) Likelihood functions resulting from noise with standard deviation σV twice as large as σH ; x
indicates the maximum-likelihood estimate (MLE) of the sensory signals Ŝ = (ŜV , ŜH ). (Middle column)
Prior distributions with variance σ 2

m → ∞, but different variances σ 2
x . Top: flat prior σ 2

x → ∞; middle:
intermediate prior 0 < σ 2

x < ∞; bottom: impulse prior σ 2
x = 0. (Right) Posterior distributions, which

are the normalized product of the likelihood and prior distributions. A dot indicates the maximum a
posteriori (MAP) estimate ŜMAP = (ŜMAP

V , ŜMAP
H ). Arrows correspond to bias in the MAP estimate relative

to the MLE estimate. The orientation of the arrows indicates the weighting of the ŜV and ŜH estimates.
The length of the arrow indicates the degree of fusion. (Adapted with permission from Ernst, 2007.
Copyright ARVO.)

sensory signals (D̂MAP = ŜMAP
V − ŜMAP

H ) after
integration occurred to solve iteratively the
credit-assignment problem: What portion of
D̂MAP should be attributed to the bias Bi or
the world property SWi

of each modality? The
solution of this problem will allow the observer
to remap each modality, as a means of providing
the best possible (low bias and low uncertainty)
estimate of SW .

To begin, we assume that the system has
acquired a priori knowledge about the proba-
bility of jointly encountering a combination of
sensory signals encoded in the prior p(SV , SH ).
Some examples of visual and haptic signals
to size (SV , SH ) that might be encountered
in conjunction when trying to estimate the
world property SW are provided in Figure 12.3.

The lower row in Figure 12.3 shows what such a
distribution of jointly encountered signals might
look like. Figure 12.3 A shows cases where the
signals are derived from the same location for
which we can assume that SWV

= SWH
. All these

examples show signals with varying accuracy
(Bi = SWi

− Si). The point here is that the
variance in the joint distribution and hence the
variance of the prior learned from these signals is
affected by the variability in accuracy of the two
signals. Figure 12.3B illustrates a similar example
of co-occurrence of visual and haptic signals,
but here these signals are derived from slightly
disparate locations �x for which in general
SWV

�= SWH
. We return to this example in a later

section of this chapter when we discuss the link
between integration and remapping.
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Assuming for now that all the joint distribu-
tions are Gaussians, a prior that fulfills what we
have discussed thus far can be defined as:

p(S)=p(SV ,SH )=N (n,�)

with �=RT

(
σ 2

m →∞ 0
0 σ 2

x

)

R (12.7)

which is a bivariate normal distribution with
mean n = (0, 0) and covariance matrix �. σ 2

m

and σ 2
x are the variances of the prior along its

principal axes and R is an orthogonal matrix
that rotates the coordinate system by 45◦ so
that the prior is aligned with the diagonal
where SV = SH (Fig. 12.5, middle column).
We choose the variance along the positive
diagonal to be σ 2

m → ∞, which indicates that the
probability of jointly encountering two signals
(SV , SH ) is independent of their mean value.4

The second variance, σ 2
x , indicates the spread

of the joint distribution, which represents the
a priori distribution of possible discrepancies
between the signals. Therefore, the probability
that the source of any detected discrepancy D̂
is not random noise but an actual difference
between the signals D = SV − SH is a function
of the variance � (i.e., σ 2

x ) of this prior.
The diagonal with SV = SH represents the
mapping between the signals since it provides
the functional relationship between the two. We
can therefore also refer to σ 2

x as the mapping
uncertainty. Furthermore, this distribution also
provides a measure of redundancy between the
two signals; the smaller the variance σ 2

x , the more
redundant the signals are with respect to one
another.

Figure 12.5 illustrates three examples of the
model described earlier for prior distributions
with different σ 2

x (middle column) ranging from
very large (top row) to near zero (bottom row).
A prior probability with σ 2

x → ∞ corresponds to
a state in which any possible combination of SV

and SH signals contains roughly an equal a priori
probability of occurrence. Such a prior is often
referred to as a “flat prior.” In this extreme case

4Thus, n could have any value with SV = SH . We
arbitrarily choose n = (0, 0).

of σ 2
x → ∞, there is no mapping between the

sensory signals or estimates derived from them
and thus the discrepancy between the estimates
is ill defined. Theoretically, however, one might
argue that the accuracy of the signals with
respect to this ill-defined mapping approaches
zero. This has also been referred to as signals
that are invalid (with respect to the property
defined by the mapping). Such a situation is an
example of signals SV and SH that do not carry
redundant information. Thus, as an example we
could take any set of nonrelated signals, such
as the luminance and the stiffness of an object,
which are highly unlikely to carry any redundant
information (Ernst, 2007) and can co-occur in
any possible combination.

A prior probability with σ 2
x = 0, on the

other hand, corresponds to a state in which
signals occur only for the condition SV = SH .
Such a prior relates to signals that are always
perfectly accurate (with respect to the property of
interest). In this situation the prior probability of
encountering an actual difference D between the
signals is zero. Thus, in this situation the sensory
signals are completely redundant. While such
a scenario would be purely theoretical because
there is always some variance present, indirect
empirical evidence that humans use very tight
priors was provided by Hillis, Ernst, Banks, and
Landy (2002), who found close to mandatory
fusion of disparity and texture estimates to slant
(see later discussion).

An intermediate value of σ 2
x corresponds to

a state in which the probability distribution
indicates some uncertainty with respect to the
possible co-occurrence of signal values SV and
SH . Such a prior relates to signals that display
some inaccuracy with respect to the mapping
and thus there exists a nonzero probability of
encountering various differences D between the
signals. The signals in this situation are thus
only partially redundant (with respect to one
another). Since this prior refers to the probability
of co-occurrence of certain signals, that is,
it represents the prior probability of jointly
encountering an ensemble of sensory estimates,
in earlier work this prior p(SV , SH ) has also been
referred to as the “coupling prior” (Bresciani
et al., 2006; Ernst, 2005, 2007). Realistically, all
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cases of multisensory integration, such as size
estimation from vision and touch, fall into this
category (Ernst, 2005; Hillis et al., 2002). This
is because there is always some probability that
the signals are inaccurate due to external or
internal factors, such as muscle fatigue, optical
distortion, or other environmental or bodily
influences (Fig. 12.3A).

Using Bayes’ rule (see Chapter 1), the joint
likelihood function obtained from the sensory
signals is combined with prior knowledge
about the co-occurrence statistics of these
signals. This gives rise to a final estimate of
the sensory signals ŜMAP = (ŜMAP

V , ŜMAP
H ) based

on the posterior distribution p(SV , SH |zV , zH ) ∝
p(zV , zH |SV , SH )p(SV , SH ), which balances the
benefit of reduced variance with the cost of
a potential bias in the estimate (Fig. 12.5,
right column). Note that this step does not
yet provide an estimate of the world property
SW = (SWV

, SWH
) or the biases B = (BV , BH ).

How we estimate SW and B will be discussed
in the later section, “From Integration to
Remapping.” However, from the MAP estimate
of the sensory signals we can derive the best
estimate of the current discrepancy D between
the signals, which is D̂MAP = ŜMAP

V − ŜMAP
H .

The posterior estimate ŜMAP is shifted with
respect to the likelihood Ŝ. This shift is
highlighted by the arrow in Figure 12.5, right
column. The length of the arrow indicates the
strength of the integration, whereas the direction
of the arrow indicates the weighting of the
sensory estimates. In the following we will more
closely investigate this shift (captured by the
two parameters of the arrow) for the three
values of σ 2

x .
If the prior is flat (σ 2

x → ∞; Fig. 12.5,
top row), the posterior becomes identical to
the likelihood function, which implies that the
multisensory estimates are not integrated but
kept independent, that is, they are segregated
(no shift). Since the signals are independent,
any form of integration in this case would only
introduce a bias into the final estimates. Given
this situation, there can also be no benefit from
integration in the form of reduced variance
because the signals do not carry redundant
information.

In contrast, a prior with σ 2
x = 0 gives rise

to a posterior that results in complete fusion
(Fig. 12.5, bottom row). As can be observed from
the figure, such an impulse prior denotes the
existence of only those signals for which SV = SH .
Thus, in the case of fusion, the maximum a
posteriori (MAP) estimate ŜMAP coincides with
the prior p(SV , SH ). The direction α in which
the estimate is shifted is solely determined by
σ 2

V and σ 2
H of the likelihood function (Bresciani

et al., 2006):

α = arctan

(
σ 2

H

σ 2
V

)

. (12.8)

In this particular case, the MAP estimate
maximally benefits from fusion by acquiring
the smallest possible variance in the combined
estimate. The prior with σ 2

x = 0 applies to a
situation with entirely accurate and perfectly
redundant signals. Thus, whatever detected
discrepancy exists must be a consequence of
measurement noise. This case where σ 2

x =
0 is identical to the previously discussed
standard model of cue integration, which
also assumed unbiased (accurate) signals and
estimates derived from the same world property
(see section on “Multisensory Integration” in
this chapter and Chapter 1).

For cases where 0 < σ 2
x < ∞, the MAP

estimate ŜMAP = (ŜMAP
V , ŜMAP

H ) is situated midway
between the maximum-likelihood estimates
(ŜV , ŜH ) and the diagonal (Fig. 12.5, middle
row). In other words, the result here lies between
the “no fusion” case and “complete fusion” case,
and thus we refer to it as “partial fusion.” The
strength of integration is indicated by the length
L of the arrow, which has been normalized to
the size of the conflict and can be described as
a weighting function between the likelihood and
the prior in the direction of α (the direction of
bias α can be determined from Eq. 12.8):

L = σ 2
likelihood(α)

σ 2
likelihood(α) + σ 2

prior (α)
. (12.9)

Any measured discrepancy D̂ = ŜV − ŜH is the
result of both measurement noise (σV and σH )
and an actual discrepancy (D = SV − SH ) due to
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bias B (inaccuracy in SV and/or SH , assuming
SWV

= SWH
). Combining the likelihood with

the prior, resulting in this weighting function
(Eq. 12.9), provides the best balance between
reliability and accuracy of the estimates of the
sensory signals (in the MAP sense). The overall
variance of the final estimate resulting from
partial integration of the sensory signals lies in
between that resulting from pure segregation and
complete integration (Fig. 12.5, right column). It
must be noted, however, that the final estimate
can only profit from the integration process to
the extent to which the signals are redundant.
Thus, this weighting scheme constitutes the best
balance between the costs of introducing a bias
in the estimates and benefits of reducing their
variances. The remaining difference in the MAP
estimates D̂MAP = ŜMAP

V − ŜMAP
H corresponds

to the best current estimate of the actual
discrepancy D between the sensory signals.
The predictions of this model, both regarding
bias and variance, have been confirmed by an
experimental study of the perceived quantity
of visual and haptic events (Bresciani et al.,
2006).

This theoretical framework can also explain
how we can learn to integrate over an artifi-
cially enforced, statistical relationship between
two arbitrary signals (Ernst, 2007). In this
study, participants were trained by presenting
previously unrelated aspects of a stimulus,
for example, the luminance and the stiffness
of an object, in correlation for some time.
Participants learned this correlation; they began
to exhibit integration of the two aspects of
the stimulus which were previously unrelated.
This was interpreted as the learning of a
new prior probability that certain combinations
of the two stimulus aspects—luminance and
stiffness—are likely to co-occur. Once such
a relationship is learned, the newly acquired
prior knowledge can be used to integrate the
estimates and therefore observers can benefit
from a reduction in estimation noise. Thus,
during the experiment, the participants switched
their behavior from treating the estimates as
completely independent to a more intermediate
perception of the estimates exhibiting “partial
fusion.”

BREAKDOWN OF INTEGRATION

It is important to note that in the model
described in the previous section, the extent
of the discrepancy between the maximum-
likelihood estimates D̂ = ŜV − ŜH does not
influence the integration process (i.e., whether
estimates are integrated or segregated). The
weighting between the estimates, that is, the
weighting between the likelihood and the prior,
as well as the direction of shift α, are all
independent of the extent of the discrepancy
given the assumptions of this model. Thus, this
model so far does not capture the breakdown
of integration. This is because the shape of the
prior and the shape of the likelihood are both
assumed to be Gaussian. The problem arises at
larger conflicts between signals where, in order to
behave robustly, integration should break down.
Roach, Heron, and McGraw (2006) suggested
relaxing the Gaussian assumption to account for
this possibility. In particular, they introduced
“heavy tails” to the Gaussian distribution of the
prior. This transforms the prior in a very sensible
way: Close to the diagonal the prior by and
large keeps its Gaussian shape with a reasonable
variance. Far from the diagonal the prior does
not approach zero probability as a Gaussian
would, but maintains a nonzero probability.
In essence Roach et al. (2006) suggest a linear
combination of a flat coupling prior that is used
for modeling segregation (Fig. 12.5, upper row)
and a coupling prior that is used for modeling
partial fusion or fusion. As a result, the system
continues to behave as it did without the long
tails when the discrepancies are reasonably small,
since the central Gaussian part of the prior
plays the dominant role. For larger discrepancies,
however, this prior ensures that the process
converges toward segregation, because of the
increased influence of the flat part of the prior.

This model can further be extended to
orthogonal dimensions to include, for example,
spatial and temporal discordance as well.5

5We call a conflict along the dimension to be estimated
(e.g., size) discrepancy, whereas when we refer to a conflict
in an orthogonal dimension (e.g., space or time) we call
this discordance.
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Figure 12.6 Schematic illustration demonstrating robust estimation, that is, the breakdown of integration.
The coupling prior is assumed to be of Gaussian shape with heavy tails (Roach et al., 2006). The variance of
the Gaussian increases with increasing spatial or temporal discordance between the two signals, reflecting
a lower correlation between the signals (Fig. 12.3B). Thus, with small discrepancies between the SV and SH

signals, the weight of the prior decreases with temporal asynchrony and spatial disparity and so the effect
of integration disappears. With large spatial inconsistencies or temporal asynchronies the two signals can
then be perceived independently of one another as the correlation tends to disappear and the coupling prior
becomes flat. (Adapted with permission from Ernst, 2007. Copyright ARVO.)

The conceptual basis of the model is illustrated
in Figure 12.3B. We assume that under most
circumstances, objects and the environment
tend to change in their properties over space
and time in a smooth, continuous way rather
than a discontinuous and chaotic manner. Thus,
despite the spatial or temporal discordance,
generally there will still be a correlation
between the multisensory signals. This corre-
lation implies that despite some spatial and
temporal discordance there is still redundancy
in the multisensory signals. This redundancy
should be used by the brain to improve its
estimates. An example of a distribution of
spatially discordant SV and SH size signals is
indicated in the lower panel of Figure 12.3B.
With increasing spatial discordance �x , this
correlation becomes weaker and weaker until
finally the co-occurrence statistics of signals
derived from vision and touch will result in a flat
distribution. This change in the co-occurrence
statistics with increasing spatial or temporal
discordance is illustrated in Figure 12.6. The left

column shows a likelihood function, which
is identical for all five situations depicted
since the sensory measurements are assumed
to be identical in all cases. The effect of
spatial and temporal discordance is reflected
in the prior. For �x = 0 (�t = 0) such a
prior would resemble a central Gaussian with
intermediate variance (analogous to Fig. 12.5,
middle row), which also has heavy tails to
account for the integration breakdown with
increasing disparity in the size estimates (the flat
tails are indicated by the gray background in
the prior). With increasing spatial or temporal
discordance (�x �= 0 or �t �= 0), the variance
of the central part of the prior increases. This
is because the prior probability of encountering
combinations of SV and SH signals, for which the
discrepancy D = SV − SH is large, increases with
the discordance in space or time (�x or �t ).
As a consequence, as the discordance in space or
time increases, the influence that the Gaussian
part of the prior exerts on the likelihood
function decreases. This process is represented
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by the arrows in Figure 12.6 (right column).
This phenomenon corresponds to a breakdown
of the integration process across space and
time, which upon experimentation manifests
itself as the spatial and temporal windows of
integration.

The exact shape of the prior distribution
reflects the co-occurrence statistics of the sensory
signal values SV and SH . This in turn determines
the point at which the integration falloff occurs
and therefore also determines the dimensions of
the temporal or spatial window of integration.
It is likely that all these priors have flat
tails, because even at large discrepancies there
will always be some remaining probability
of encountering outliers in the co-occurrence
statistics. The tails enable the independent
treatment of signals at large inconsistencies. In
principle, it should be possible to reconstruct
the observers’ embodiment of such a prior
from experiments that measure the spatial and
temporal integration windows. This could be
achieved, for example, by extending the methods
introduced by Stocker and Simoncelli (2006) to
this two-dimensional estimation problem.

Recently, a few other approaches have been
proposed to model this elusive aspect of the
robustness or breakdown of integration. Some
of these methods have also been described in this
book (Chapters 2 and 13). We will discuss two of
the more prominent proposals in this direction,
both of which closely resemble the proposal
presented here. The first proposes that the like-
lihood function is a mixture of Gaussians (Knill,
2007b) to explain the breakdown of integration,
whereas the second approach formalizes the
concept of causal inference to achieve the same
purpose (Körding et al., 2007). Both approaches
model the transition from fusion to segregation
successfully; however, they both relate to special
cases and specific scenarios for which they might
be considered optimal.

The mixture-of-Gaussians approach by Knill
(2007b) refers to a specific scenario in which
a texture signal to slant is modeled by a
likelihood function, which is composed of a
central Gaussian with heavy tails. This proposal
resembles what we have discussed earlier in this
chapter, except that the heavy tails are added

to the probability distributions of one of the
sensory estimates and not to a coupling prior.
The primary argument in this theory is that in
order for texture to be a useful signal, we must
make some prior assumptions about the isotropy
of the texture that, in statistical considerations,
could possibly fail in some cases. This argument
provides a suitable justification for the use of
heavy tails. The argument, however, is specific
to the texture signal and can therefore not be
easily extended to other within- or cross-modal
sensory signals.

The second proposal attempts to formalize
the concept of causal inference to model why
integration breaks down with highly discrepant
information (Körding et al., 2007). The proposal
has the same intuitive basis that we have been
referring to from time to time, that is, segregation
at large discrepancies, integration when there is
no apparent discrepancy. This model, however,
concentrates on the causal attribution aspects of
combining different signals. Two signals could
either have one common cause, if they are
generated by the same object/event, or they may
have different causes when generated by different
objects/events. In the former case, the signals
should be integrated, and in the latter case they
should be kept apart. The model takes into
account a prior probability pcommon of whether
a common source or separate sources exist for
a given set of multisensory signals. pcommon = 1
corresponds to perfect knowledge that there is
a common source and thus complete fusion.
As discussed previously, complete fusion can
be described by a coupling prior corresponding
to an impulse prior with σ 2

x = 0. pcommon =
0 corresponds to complete knowledge that
there are two independent sources and thus
complete segregation. Complete segregation was
previously described by a flat coupling prior
with σ 2

x → ∞. Whenever two sensory signals
are detected, in general there will be some
probability pcommon of a common cause and
some probability 1 − pcommon of independent
causes. This probability depends on many factors
such as, for example, temporal delays, visual
experience, context, and many more (Körding
et al., 2007), so it is not easy to predict. In
any case, however, it will lead to a weighted
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combination of the two priors for complete
fusion and segregation, and will thus in essence
be analogous to a coupling prior, which has
the form of an impulse prior with flat, heavy
tails (Körding et al., 2007, supplement). In this
sense, the causal-inference model is a special
case of the model described earlier. It does not
allow for variance in the prior describing the
common cause (i.e., the impulse prior), because
just like the standard model of integration (see
Chapter 1), the causal-inference model is based
on the assumption that all sensory signals with
a common cause are perfectly correlated and
accurate (i.e., the sensory estimates are assumed
to be unbiased). Because it does not consider a
weaker correlation between the co-occurring sig-
nals (i.e., the situation illustrated in Fig. 12.3B)
and because it does not take into account the
(in)accuracy of the signals (i.e., the situation
in Fig. 12.3A), the causal-inference model does
not optimally balance the benefits and costs
of multisensory integration, that is, reduced
variance and potential biases, respectively.

REMAPPING

As discussed earlier, multisensory integra-
tion breaks down with increasing discrep-
ancy between the estimates. However, if the
discrepancy is systematic and persists over
several measurements, we adapt to such a
discrepancy and doing so brings the conflicting
sensory maps (or sensorimotor maps) back
into correspondence. This process of adaptation
is therefore also referred to as remapping or
recalibration. In this section, we review optimal
linear models of remapping in the context of a
visuomotor task. In the next section, we apply
this model to the problem of combining visual
and haptic size signals while simultaneously
determining the best remapping of each.

There are many examples of such sensory and
sensorimotor adaptation processes (e.g., Adams,
Banks, & van Ee, 2001; Bedford, 1993; Frissen,
Vroomen, & de Gelder, 2003; Pick et al., 1969;
Welch, 1978; Welch & Warren, 1980, 1986). The
most classic examples of this phenomenon are
the experiments on prism shifts first studied
by Hermann von Helmholtz (1867). In these

experiments observers were asked to point to a
visual target in “open loop” using fast pointing
movements. Here, the use of open loop refers
to the absence of online feedback to control
the movement. The visual feedback can only be
procured at the end of the pointing movement
upon observing the location where the finger
landed. Let this position of the estimated
location of the feedback signal be ŜF and the
estimated target location be ŜL . After each trial
of such open loop pointing, an error in pointing
response can be detected that corresponds to
the difference between the feedback- and target-
position estimates: D̂ = ŜF − ŜL . It is this error
that adaptation seeks to minimize.

A typical visuomotor adaptation experiment
consists of three phases: a baseline, in which
the accuracy of pointing performance is assessed
(Fig. 12.7, trial <60). Once the baseline is
established, observers receive spectacles fitted
with prisms that shift the visual world by some
constant amount (e.g., 10◦). Once observers
wear the prism-fitted spectacles, they exhibit an
initial error in their pointing response, which
is equivalent to the extent of the prism shift.
After only a few pointing movements, however,
observers begin to correct for the error induced
by the prism and eventually “adapt” to this
change (Fig. 12.7, 60 ≤ trial ≤ 110). After
adaptation has been achieved, the removal of
these prism glasses results in recalibration back
to baseline (Fig. 12.7, trial >110).

An interesting aspect of this phenomenon is
the rate at which people adapt to these changes.
This rate varies enormously depending on the
experimental condition. For instance, the rate
of adaptation strongly depends on the nature of
the conflicting signals provided to the observer.
In visuomotor tasks, like pointing to targets,
usually the first few trials after wearing prism-
spectacles are sufficient for reaching an almost
constant minimization of the error, that is,
reaching an asymptote for the newly introduced
change. In contrast, adaptation purely within
the visual domain, for instance, for texture and
binocular disparity signals, has been known to
take up to several days until adaptation saturates
and a constant minimization of the error
has been achieved (Adams et al., 2001). Four
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Figure 12.7 Kalman-filter responses to step changes. The dashed black lines in each panel represent the
relationship between the position of the reach endpoint and the position of the visual feedback. This
relationship is the visuomotor mapping. As in our experiments, there are three phases: prestep (trials
1–60), step (61–110), and poststep (111–160). A first step change in the mapping occurs at the end of
the prestep phase; the initial mapping is then restored after the step phase. The blue curves represent the
visuomotor mapping estimates D̂MAP

t+ over time. The upper and lower rows show models of the estimates
when the measurement uncertainty σ 2

z is small and large, respectively. An increase in σ 2
z causes a decrease

in adaptation rate. The left and right columns show responses when the mapping uncertainty σ 2
x is small

and large, respectively. An increase in σ 2
x causes an increase in adaptation rate; the effect is larger when σ 2

z

is large. (Adapted with permission from Burge et al., 2008. Copyright ARVO.)

examples of adaptation profiles with different
rate parameters are provided in Figure 12.7.
Even though adaptation has been actively
researched for over a 100 years, the search for
a computational framework for it only began in
recent times with models that tried to describe
the process underlying remapping (e.g., Baddley,
Ingram, & Miall, 2003; Burge, Ernst, & Banks,
2008; Gharahmani et al., 1997).

In 2008, we investigated how the statistics
of the environment and the system together
influence the rate of adaptation in visuomotor
tasks (Burge et al., 2008). The problem can be
formulated in a manner almost analogous to that
faced in integration. When a conflict D̂t = ŜF ,t −
ŜL,t is detected on a given trial t , which in this case
would be the difference between the estimated
feedback and target positions, the perceptual
system must ask itself, what is the source of this
conflict.6 Upon consideration, we find that the

6In the earlier example, we would define D̂t =
ŜV ,t − ŜH ,t .

answer is twofold: The conflict could be caused
by an actual discrepancy between the sensory
(or the sensorimotor) maps Dt . Alternatively,
it could merely be due to measurement noise
σ 2

z when acquiring the sensory estimates D̂t . If
this latter is indeed the case and the discrepancy
is caused solely by measurement noise, there
would be a new random discrepancy from
trial to trial, which would best be ignored
by the system. In other words, the system
should not attempt to adapt to this randomly
fluctuating change in discrepancy caused by
measurement noise because to do so would
actually make things worse. In sharp contrast,
if the discrepancy instead arose due to an actual
mismatch in the sensorimotor maps Dt , it would
cause a systematic and sustained discrepancy
over trials. Because the occurrence of this
discrepancy is persistent and systematic, it would
be appropriate for the system to adapt to it.

Analogous to what has been discussed for
integration, also for remapping the estimates of
both types of error, random versus systematic,
contain uncertainty. That is, on a given trial the
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system can only determine the discrepancy with
some uncertainty. The measure of uncertainty
for random errors is the variance σ 2

z of the mea-
surement z . As noted in the previous sections on
integration, detecting a systematic error presents
more challenge for the system. This is because
such an error cannot be determined from one
trial observation alone. We must accumulate
prior knowledge about the error signal over
several observations and use this information to
successfully identify a systematic error. Those
data, however, also contain uncertainty: the
uncertainty σ 2

x associated with the mapping.
Since it is likely that visuomotor tasks contain

both systematic and random errors, the nervous
system must be able to weight the error estimates
flexibly based on their relative uncertainties
to solve this credit-assignment problem and
to create an optimal estimate of the current
mapping. We now turn to a computational
framework that formalizes these arguments.

Let us consider that the purpose of the
system is primarily to obtain the best possible
estimate of the visuomotor mapping in order to
remain accurate. The best estimate of the current
systematic discrepancy on a given trial, D̂MAP

t+
(the MAP estimate derived from the posterior),
is a weighted average of the conflict currently
measured, D̂t = ŜF ,t − ŜL,t (the MLE estimate),

and the prediction based on past history, D̂t−
(derived from the prior):

D̂MAP
t+ = wxD̂t− + wzD̂t

= D̂t− + K (D̂t − D̂t−). (12.10)

The value K is a proportion of the error signal
by which the visuomotor mapping is adjusted.
In the framework we propose further, we refer
to this proportion as the Kalman gain. The
“+” on the index indicates that this conflict
estimate is used in the next trial to update
the mapping; the “−” on the index indicates
that this prior information is derived from
previous trials, whereas no modifier on the index
indicates that it is the measurement derived
on the current trial. In an optimal scenario,
the weights would be inversely proportional to
the relative uncertainties associated with error

estimates based on measurements and prior
knowledge:

wx = σ 2
z

σ 2
z + σ 2

x

and wz = σ 2
x

σ 2
z + σ 2

x

.

(12.11)

From Eqs. 12.10 and 12.11, we obtain

K = σ 2
x

σ 2
z + σ 2

x

. (12.12)

Since D̂MAP
t+ is the optimal current estimate of the

systematic error that determines the discrepancy,
recalibration in any given trial should occur
based on this combined estimate.

Adaptation is an iterative process where every
trial t results in an updated combined estimate
of the current error signal, which is used for
updating the prior in the next step, thereby
enabling the efficient tracking of the changes
that occur in the mapping. Many experiments
show that the brain can adapt under quite
complex conditions. For the sake of simplicity,
however, here we consider a linear system,
which has achieved steady state. Under these
assumptions, and following our arguments for
Bayesian optimality, the Kalman filter presents
an optimal solution to these modeling efforts
(for the derivation, refer to Burge et al., 2008).
In doing so, we treat the performance of a
visuomotor task as a control system in which
the error signal is adjusted by the proportion
K , which represents the Kalman gain of such a
system.

Figure 12.7 shows the response of a Kalman-
filter model to step changes in the mapping.
Such a step change is analogous to introducing a
prism and later removing it. As the filter adjusts
the visuomotor mapping, the error between
target and reach position decreases exponentially
with time. In other words, human subjects
compensate for the error on a trial-by-trial basis
to achieve exponentially a constant asymptote
at which they have minimized their error.
Therefore, we use the exponent λ to express the
adaptation rate, which is a function of K :

λ = − log(1 − K ). (12.13)
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From this equation, we find that the model
predicts faster adaptation rates for higher gains
and low adaptation rates for lower gains.
The measurement uncertainty σ 2

z and the
mapping uncertainty σ 2

x affect the Kalman gain
and thus the adaptation rate in contrasting
ways (Eq. 12.12). These opposing effects are
illustrated in Figure 12.7. With an increase in
measurement uncertaintyσ 2

z , the adaptation rate
slows down, whereas with an increase in map-
ping uncertainty σ 2

x , adaptation becomes faster.
These predictions have been tested empiri-

cally by systematically varying the measurement
noise using various blur conditions on the visual
feedback signals, thus making them less reliable
to estimate (Burge et al., 2008). They found that
observers did indeed adapt more slowly with an
increase in the blur of the feedback stimuli. When
they introduced a perturbation into the mapping
on a trial-by-trial basis instead of blurring the
feedback signal, however, they found that a
random but statistically stationary error in the
feedback did not elicit any change in the rate of
adaptation. That trial-by-trial variation did not
affect the rate of recalibration suggests that the
measurement noise may be estimated online in
any given trial, but not over trials.

In a second experiment Burge et al. (2008)
perturbed the mapping from trial to trial with
time-correlated noise in a random-walk fashion.
To put it simply, in each trial a new random
variable drawn from a Gaussian distribution
was added to the previous mapping. If correctly
learned, this manipulation affects the mapping
uncertainty as the mapping is constantly chang-
ing in a time-correlated fashion. Consistent with
the predictions of the optimal adaptor, the
results showed an increased adaptation rate for
an increase in the variance of the random-walk
distribution. In conclusion, it seems that to a
first approximation (e.g., assuming stationary
statistics) the Kalman-filter model is a good
predictor of human adaptation performance.

FROM INTEGRATION TO
REMAPPING

In this section we apply the Bayesian (Kalman-
filter) model of remapping to the visual-haptic

size-estimation task and combine it with the
partial-integration model from earlier in this
chapter. This is illustrated in Figure 12.8.
We assume there is a sequence of trials at
times t in which the observer has sensory
estimates ŜV ,t and ŜH ,t , and tries to estimate
SW = (SWV

, SWH
). For simplicity, we assume the

perceptual situation to be constant throughout
the trials, so that SW , Si , and Bi are all
independent of t . Furthermore, for now we
assume that SWV

= SWH
, which implies that

we are estimating the identical world property
by vision and touch. The initial situation for
estimating SW is that there may exist an unknown
additive bias B = (BV , BH ) in the visual and
haptic signals S = (SV , SH ) = (SWV

+ BV , SWH
+

BH ) leading to a discrepancy D = SV − SH

between the sensory signals. At first, we do not
know these biases, so at time step t = 0, before
any measurement is performed, the initial bias
estimate is B̂0 = 0, the initial prediction for the
discrepancy is D̂t−=0 = 0, and the initial coupling
prior p0(SV , SH ) = p(SV ,0, SH ,0) is unbiased, that
is, it is centered on the diagonal SV = SH .
For every time step t = 1,2,3,. . ., the observer
begins by deriving the maximum-likelihood
estimate Ŝt = (ŜV ,t , ŜH ,t ) of the current signals
St = (SV ,t , SH ,t ). These MLE estimates contain

a discrepancy D̂t = ŜV ,t − ŜH ,t . In the leftmost
column of Figure 12.8 this is indicated by
the red Gaussian blobs being off the diagonal
(equivalent to Fig. 12.5, left column).7 The
variance of the likelihood function �z indicates
the measurement uncertainty. Next, to solve
the credit-assignment problem of whether this
discrepancy D̂t is caused by noise �z or an
actual difference D between the signals, the
Bayesian integration scheme is applied, com-
bining the maximum-likelihood estimate with
prior knowledge about the joint distribution of
SV ,t and SH ,t , that is, the mapping between the
signals. That is, the column labeled “prior” in
Figure 12.8 shows an example of an intermediate
“coupling prior” with variance σ 2

x . This variance

7For illustrative purposes we assume that at every trial
the same noise value ε is added to the measurement zi,t =
Si,t + εi,t so the likelihood function is identical in each
row of Figure 12.8.
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Figure 12.8 Illustration of the link between integration and remapping of visual and haptic size estimates.
The leftmost column illustrates the maximum-likelihood estimates Ŝt = (ŜV ,t , ŜH ,t ) indicated by a dot
with the corresponding measurement noise �z indicated by the red Gaussian blob. The column labeled
“prior” gives a coupling prior p(SV ,t , SH ,t ) = p0(SV ,t − B̂MAP

V ,t−1, SH ,t − B̂MAP
H ,t−1) with corresponding mapping

uncertainty σ 2
x indicated by the red shaded area. The column labeled “posterior” shows the maximum a

posteriori (MAP) estimate, indicated by the o, together with its variance. The MAP estimate is the result
of the Bayes’ product between likelihood and prior. The amount of integration and the weighting of the
signals are given by the length and the orientation of the red arrow, respectively, just as in Figure 12.5. The
estimate of discrepancy resulting from the MAP estimate is given by D̂MAP

t+ = ŜMAP
V ,t − ŜMAP

H ,t . To determine

the part of D̂MAP
t+ that can be attributed to a visual or haptic bias is again an ambiguous problem. This new

credit-assignment problem is solved in the rightmost column labeled “bias estimate.” Here the ambiguous
D̂MAP

t+ estimate is represented by the diagonal line. Additionally, there is prior information p(BV , BH ) about
potential biases occurring in the visual and haptic modality, which is indicated by the blue Gaussian blob.
The discrepancy estimate combined with the bias prior according to Bayes’ rule results in the current bias
estimate B̂MAP

t . This resulting bias estimate is used for shifting the coupling prior in the next time step. The
estimate B̂MAP

t is indicated by x and the blue arrow. The size estimate of the object is the combination of
the MAP and the bias estimate according to ŜW ,t = ŜMAP

t − B̂MAP
t = (ŜMAP

V ,t − B̂MAP
V ,t , ŜMAP

H ,t − B̂MAP
H ,t ). This is

indicated by the sum of the red and blue arrow in the “posterior” column. Each row provides a new time
step in the remapping process. Repeating the same estimation over several trials t , the bias estimate B̂MAP

t , as
indicated by the blue arrow, is exponentially increasing so that in the end the system reaches the calibrated
steady state.
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corresponds to the mapping uncertainty.
Applying Bayes’ rule p(SV ,t , SH ,t |zV ,t , zH ,t ) ∝
p(zV ,t , zH ,t |SV ,t , SH ,t )p(SV ,t , SH ,t )results in the
optimal current estimates of the sensory signals
ŜMAP

t = (ŜMAP
V ,t , ŜMAP

H ,t ), thereby maximally reduc-
ing the variance in the sensory estimates while
at the same time providing the best possible
estimate of the current discrepancy D̂MAP

t+ =
ŜMAP

H ,t − ŜMAP
H ,t at time step t . Thus, the MAP

estimate of the discrepancy D̂MAP
t+ is smaller

than D̂t to the extent that the two sensory
signals are coupled. The result of combining
likelihood with prior knowledge using Bayes’
rule is illustrated in Figure 12.8 in the column
labeled “posterior.” The result of integration
corresponds to Eq. 12.10: D̂MAP

t+ = wxD̂t− +
wzD̂t = D̂t− + K (D̂t − D̂t−). This integration
process, illustrated by the red distributions and
the red arrow, is identical to what was shown in
Figure 12.5. The MAP estimate ŜMAP

t = (ŜMAP
V ,t ,

ŜMAP
H ,t ) at each time step is the best current

estimate of the size signals available. The best
current discrepancy estimate between the size
signals corresponds to D̂MAP

t+ = ŜMAP
V ,t − ŜMAP

H ,t .
Note, up to now we have no estimate of

bias B̂t and no estimate of visual and haptic
object size SW = (SWV

, SWH
). What we do have

is the discrepancy estimate D̂MAP
t+ , but to what

extent the visual and haptic biases contribute this
discrepancy

D̂MAP
t+ = (SWV

+ B̂MAP
V ,t ) − (SWH

+ B̂MAP
H ,t )

= B̂MAP
V ,t − B̂MAP

H ,t , given that we are

assuming SWV
= SWH

, (12.14)

is still unknown. This ambiguity in the discrep-
ancy estimate after integration is indicated by the
blue diagonal line in the rightmost column of
Figure 12.8. It illustrates that there is an infinite
combination of visual and haptic biases that are
consistent with D̂MAP

t+ . For now, we assume that
we know for sure that the visual and haptic sizes
are identical (SWV

= SWH
), so the discrepancy

estimate given by the blue line contains no noise,
that is, is not blurry. The attribution of visual
and haptic bias to the discrepancy estimate is a
second credit-assignment problem, and in order
to solve it we need additional prior knowledge.

In the following we will discuss how to
best resolve this new credit-assignment problem.
Gharahmani and colleagues (1997) proposed
that the discrepancy in the sensory estimates
should be resolved in proportion to their
variances (σ 2

V , σ 2
H ), that is, more credit should

be given to a signal with higher variance.
However, since the variance of an estimate does
not necessarily determine the probability of it
containing a bias (i.e., its contribution to the
discrepancy), this might lead to a suboptimal
strategy. A better way to resolve the credit
assignment problem resulting from the “bias
ambiguity” may be to use prior knowledge
about the probability of the signals being biased
p(BV , BH ). We call this the “bias prior.” We
need to use prior knowledge because there is
no direct information in the sensory signals
about whether they are accurate or biased.
For example, if the estimates derived from the
haptic modality have often been biased in the
past, it is more likely that the haptic modality
provides the biased signal also in the current
situation. This prior knowledge encoding the
probability of a bias in a sensory signal is
indicated by the blue Gaussian blob in the
rightmost column of Figure 12.8. The variance of
this prior distribution determines the probability
of the signal to be biased. In the example of
Figure 12.8, the visual signal is less likely to be
biased than the haptic signal. Consequently, in
the absence of any other evidence as to what
may have caused the discrepancy, the ambiguity
in the discrepancy estimate will be resolved
once again using Bayes’ rule. This time we use
Bayes’ rule to combine the discrepancy estimate
D̂MAP

t+ with this bias prior p(BV , BH ). This will
result in the current best bias estimate B̂MAP

t =
(B̂MAP

V ,t , B̂MAP
H ,t ) indicated by the blue arrow in

the rightmost column of Figure 12.8. The
proportion B̂MAP

V ,t /B̂MAP
H ,t and thus the direction

of the blue arrow are solely dependent on
the variance of the bias prior p(BV , BH ). Now
that we have a bias estimate we also have an
estimate of the visual and haptic size of the
object, which was our objective from the start
of this chapter. The visual and haptic sizes are
given by ŜW ,t = ŜMAP

t − B̂MAP
t = (ŜMAP

V ,t − B̂MAP
V ,t ,

ŜMAP
H ,t − B̂MAP

H ,t ) as indicated in Figure 12.8 by the
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sum of the red and blue arrows in the column
labeled “posterior.”

With this our estimation problem is solved
and at the end of the time step we have the
best current estimate of the sensory signals ŜMAP

t ,
the sizes of the objects ŜW ,t , and the biases

B̂MAP
t . However, to achieve even more accurate

estimates in the future, we have to recalibrate
our system based on these bias estimates.

The iterative recalibration process is
described next. Each row in Figure 12.8 denotes
a new time step t − 1. After integration at time
step t − 1 the perceptual system is left with a
bias estimate B̂MAP

t−1 = (B̂MAP
V ,t−1, B̂MAP

H ,t−1). It is this
bias estimate that is used during recalibration
(remapping) to change the mapping at time t
defined by the coupling prior. Thus, the coupling
prior at time t will be shifted to be consistent
with the current estimate of the bias, so that
p(SV ,t , SH ,t ) = p0(SV ,t − B̂MAP

V ,t−1, SH ,t − B̂MAP
H ,t−1),

indicated by the blue arrow in the “prior”
column of Figure 12.8.8

This iterative updating process corresponds
to the Kalman-filter approach to remapping that
we discussed in the last section. As can be seen
from Figure 12.8, while the direction of the
blue arrow stays constant, the length of the blue
arrow continuously increases with every time
step, providing an increasingly accurate estimate
of the bias B̂MAP

t and the world property ŜW ,t .
Thereby, it is the discrepancy estimate D̂MAP

t+ that
determines the extent to which one must adapt
at each time step, and this in turn determines
the rate of adaptation. This is consistent with the
exponential adaptation response discussed in the
previous section (Fig. 12.7 and Eq. 12.13). After
several time steps the system eventually reaches
steady state. This steady state, however, can only
be reached if the bias B is constant over several
trials, such as for example when wearing glasses
(Fig. 12.3A, third row). In contrast, if the bias B
is constantly changing from trial to trial, such as
for example when using different grip postures
with every size measurement (Fig. 12.3A, second

8The prior update corresponds to a linear shift. In
general, however, also the variance of the prior should
be updated. This however, goes beyond the scope of this
chapter.

row), recalibration will never saturate and reach
steady state.

There is empirical evidence that the bias
assignment during recalibration can be situation
dependent, indicating the use of different bias
priors depending on the exact stimulation
condition. This was shown by Di Luca, Machulla,
and Ernst (2009) in a recent study on visual-
auditory adaptation to temporal asynchrony.
For colocated visual-auditory signals, they found
that it is the visual estimates that exhibit adapta-
tion. On the other hand, when auditory signals
were presented via headphones, they found that
participants adapted the auditory estimates. In
this study they argue that the manipulation,
headphones versus no headphones, alters the
probability of the auditory estimate to be biased,
which is reflected in a change of the bias prior.
They argue that this is because, when presented
via headphones, the auditory signal becomes the
“odd one out” and is thus more likely biased.
The change in bias prior with spatial discrepancy
(i.e., with headphones) is similar to the change
in the coupling prior with spatial discordance
we discussed earlier for modeling the breakdown
of integration. With headphones the bias prior
will have a larger variance for BA than for BV ,
so that with headphones it is predominantly the
auditory modality that becomes recalibrated.

So far we have not discussed that the
discrepancy estimate D̂MAP

t+ may contain
uncertainty as well. We assumed that we are
seeing and touching the object at the same
location so that the size of the object is equal
in vision and touch SWV

= SWH
. In this case

any discrepancy detected D̂MAP
t+ must be the

result of a bias so there is no uncertainty in the
discrepancy estimate. However, if we consider
the situation depicted in Figure 12.3B when we
are seeing and touching the object at discrepant
locations, SWV

may be different from SWH
. This

way the discrepancy D̂MAP
t+ could either result

from a bias in one of the sensory signals or
from an actual difference in the visual and
haptic sizes of the object (SWV

, SWH
). If there is

such an uncertainty in the discrepancy estimate
D̂MAP

t+ , the blue diagonal line representing
this discrepancy in Figure 12.8 becomes
blurry as well, with the blur representing the
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uncertainty. As a result, the Bayes product of
the discrepancy estimate with the bias prior
will result in a reduced bias estimate B̂MAP

t

(compared to the situation when D̂MAP
t+ was

certain). Subtracting this reduced bias estimate
B̂MAP

t = (B̂MAP
V ,t , B̂MAP

H ,t ) from the MAP estimate
ŜMAP

t = (ŜMAP
V ,t , ŜMAP

H ,t ) will again result in the
best current size estimate (Fig. 12.8 sum of red
and blue arrow in column labeled “posterior”).
However, with the reduced bias estimate,
the size estimates for vision and touch will
differ: ŜW ,t = ŜMAP

t − B̂MAP
t = (ŜMAP

V ,t − B̂MAP
V ,t ,

ŜMAP
H ,t − B̂MAP

H ,t ). Given the situation in
Figure 12.3B, this is the optimal estimate of the
visual and haptic sizes, their biases, and their
signals. As B̂MAP

t becomes smaller with increasing
uncertainty in D̂MAP

t+ the amount of bias recali-
bration per time step will decrease accordingly.

This brings us to a question that we invoked
in the previous section, which we can now
answer more comprehensively. This question
pertains to why the rate of adaptation varies
so much in differing scenarios. The answer
is that this is because the rate is a function
of both the measurement noise �z and the
mapping uncertainty σx . A lower measurement
noise �z causes an increased adaptation rate
and so does higher mapping uncertainty σx .
Similarly, we have discussed earlier that the
extent of integration increases with an increase
in measurement noise �z and a decrease
of mapping uncertainty σx . This dependency
between the rate of adaptation and the degree of
integration appears to have empirical support.
For instance, texture and binocular disparity
signals within the visual domain have been
shown to be integrated such that they exhibit
almost complete fusion (Hillis et al., 2002). This
corresponds well to the fact that adaptation of
texture and disparity signals can take up to 2
or 3 days (Adams et al., 2001). In contrast, the
extent of integration between visual and haptic
signals seems significantly far from complete
fusion (Ernst, 2005; Hillis et al., 2002), which
corresponds to the relatively fast adaptation
rate found in the sensorimotor domain and
for visual-haptic estimates. From this we may
conclude that the mapping uncertainty (σx ;
the variance of the coupling prior) is very

low for the texture and disparity signals in
the visual domain and it is comparatively high
for sensorimotor and visual-haptic signals. This
makes sense because the two visual signals,
texture and disparity, originate from the same
receptors on the retina, so discrepancies between
these two signals are not very likely to occur.
The absence of discrepancies means there is
no need for adaptation, and thus the estimates
can be mandatorily fused. For visual-haptic
estimates, however, the situation is different,
because there are different receptors responsible
for the sensory signals. A discrepancy between
the senses is generated, for example, every time
we use tools. For example, when we grasp an
object using a gripper or a big glove, we have
to adjust the mapping between the visual and
haptic signals to use these tools in open loop. To
adjust quickly to such novel situations, errors in
the feedback signals have to be detected, which
they could not be if the signals were mandatorily
fused. Thus, in the case of visual-haptic estimates
the mapping uncertainty σx is higher than in the
case of texture and disparity estimates, leading
to a faster adaptation rate and to signals that are
not mandatorily fused.

CONCLUDING REMARKS AND
SOME OPEN QUESTIONS

We began this chapter by describing the standard
model of integration (see Chapter 1) because
it has proven successful in the description of
many experimental results. During the course
of this chapter, our goal was to argue that the
process of integration is more complex than
the standard model leads us to believe. The
standard model seeks to reduce the noise in
perceptual estimates through integration and
focuses on what we have earlier referred to as
the benefits of integration. However, it assumes
perfectly correlated and unbiased (accurate)
estimates and therefore disregards the potential
cost of integration. The price we pay for such
an assumption is that we disregard the fact
that the estimates may actually become biased
during integration. If we take into account that
signals may be inaccurate, by balancing costs
and benefits in a probabilistic way as we have
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suggested here, we achieve a unified framework
that can explain the process of integration as well
as the process of remapping.

This framework assumes that for both
integration and remapping, there exists a precise
representation of the probability distributions
that represent the measurement process as well
as prior knowledge about the mapping between
different sensory signals, that is, their co-
occurrence statistics, and about the probability
of occurrence of a discrepancy between the
sensory signals Si and the world property SW .
This includes knowing not only the mean and
the variance of the distributions but also the
entire shape, because knowledge of the shape
of the probability distributions has proven to
be crucial, especially in the efforts to model the
breakdown of integration. Up to now, however,
our knowledge about how these distributions are
represented in the human brain is very limited.
There are some indications from computational
neuroscience that the utilization of such prob-
ability distributions may be implemented in a
neuronal population code. Pouget, Deneve, and
Duhamel (2002) demonstrated that processing
with such population codes can perform integra-
tion and remapping of sensory estimates equally
well (see also Chapter 21; Ma, Beck, Latham, &
Pouget, 2006; Pouget et al., 2002). There is also
some recent evidence from monkey physiology
that Bayes-optimal integration of visual and
vestibular estimates of perceived direction of
motion may be conducted in populations of
neurons in area MSTd of the monkey brain (see
Chapter 16; Gu, Angelaki, & Deangelis, 2008).

One major problem that we face currently
with the Bayesian approach is that the prior
distributions, which are used to represent the
statistics of the sensory signals derived from
the environment, are merely postulated. The
reason that they are only postulated is that
they are not easily measurable. Future research
needs to address how priors can be determined,
measured, or manipulated independently. There
are several ways to achieve this. One method
entails the study of how priors are learned in one
context and then to investigate how the learning
of these priors is transferred to other situations or
tasks. This has successfully been demonstrated by

Adams et al. (2004), who adapted the light-from-
above prior in one context and demonstrated
transfer of the learning effect to another context
and task, thereby undoubtedly demonstrating
the updating of a priori knowledge. Alternatively,
one can indirectly infer the prior by varying the
reliability of the signal estimates using a method
proposed by Stocker and Simoncelli (2006).
Ideally, such an inferred prior distribution
should then be compared to the statistics of
the environment as measured independently by
some physical measurement device. Recently,
this approach has been employed by Banks,
Burge, and Held (Chapter 11) for the visual
perception of depth at an occluding contour.
In their experiments, Burge et al. found a good
qualitative agreement between the empirically
inferred prior and the physically measured
statistics of the environment. Future research
must strive to demonstrate such correspondence
between postulated priors and the statistics of
the environment in order to justify the Bayesian
approach to human perception.
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