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Abstract of “Perception of Shape Properties from Multiple Cues” by Massimiliano

Di Luca, Ph.D., Brown University, August 2006.

The world appears three-dimensional (3D) even though the depth dimension is lost

with projection to the retina. The visual system uses different cues that carry infor-

mation about the 3D aspects of the world, combining the information they convey.

Most research is based on the following assumptions: cues specify depth information,

they are processed independently, and they combine linearly in order to provide a

single depth-map. I present data showing that the visual system does not rely on

these assumptions. Cues are informative about only some aspects of the 3D shape

of objects. Some cues specify depth, while others carry information about surface

orientation, curvature or local shape. My hypothesis is that cues are combined in-

dependently for each of the 3D properties, and that the computation is not derived

from any unified representation.

I asked participants to make judgments about monocularly viewed computer-generated

convex shapes. Participants compared two of these shapes in terms of the magnitude

of one 3D property: depth, curvature, or orientation at a given point. One surface

was kept constant while the shape of the other was either varied between trials or it

was dynamically modified by the participants.

Results indicated that even when shapes defined by either motion, texture, or shading

were perceived as having the same curvature, they were not necessarily perceived as



having the same depth or orientation at specified points. Three-Dimensional shapes

reconstructed from the judgment of different shape properties were significantly dif-

ferent from one another. Since cues carry different information about these 3D prop-

erties, I conclude that they must be represented independently. Since properties

estimated in single-cue stimuli are predictive of the same property in cue-combined

stimuli, cue combination must be independent for each property. I propose a new

approach to cue combination that accounts for all of the observed differences.
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Chapter 1

Introduction
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“The education of our space-perception consists largely of two processes:

reducing the various sense-feelings to a common measure and adding them

together into the single all-including space of the real world” James (1890,

Vol 2 p 268-9)

On my desk there is an apple, a green shiny apple with some yellow spots. It is

illuminated by the light streaming in from the window and has the prototypical shape

of an apple, the shape that you expect an apple to be. Although its overall shape

reminds one of a sphere, the apple is more round at the top and shrinks toward the

bottom, the big concavity on the top deforms the sphere in a substantial way, and

there are many bumps distributed mostly on the two rims at the top and bottom. I

can naively say that I can see the three-dimensional shape of the apple very easily.

Although effortless, 3D shape perception is a remarkable and complex ability of the

human visual system. The visual system processes the information in the optic array

captured by the two retinae and estimates the aspect of the world lost in optical

projection1.

The classical approach to the perception of 3D shape is based on the laws of inverse

optics; it aims to reconstruct the Euclidean shape of the apple. In this approach, the

visual system picks up “depth-cues” in the retinal image 2 and analyzes them in differ-

ent modules. For the apple on my desk, there are many sources of information (for a

complete list see Cutting & Vishton, 1995), including the stereoscopic disparity of the

1The term estimate refers to the result of the computation of a scene property
2For reasons that should be clear to the reader the term “cue” will be used in the rest of the text.
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little spots, their relative velocity as I move my head, their shape and distribution on

the retina, the shape of contours, the different luminance, the position and shape of

highlights. Each of the depth-cues provides slightly different information about shape

and according to the classical approach the difference is due only to the amount of

noise in the pick-up; it is implicitly assumed that cues provide the same type of infor-

mation about shape, the relative depth of its parts. Each cue is analyzed in isolation

by a module that computes an estimate of shape in the form of a “depth map”. So,

because each cue has the same informative power, it is analyzed in a modular way,

and it is used to recover the Euclidean shape of objects, this way of analyzing the

information is called “shape-from-x” (Bülthoff, 1991). Subsequently, all depth maps

are combined using a weighted average according to the reliability of cues in order to

reduce the noise in the measurement and achieve a unique representation of shape.

Other geometric properties can be computed from this single representation. In this

framework, the visual system’s task is to reconstruct the metric shape of the object,

that is to obtain a veridical perception of the Euclidean shape.

There are findings which challenge many of the assumptions that the classical

approach makes and in this work I will provide further evidence against the approach.

My key observation is that cues are not equally informative about different aspects of

the shape of an object. Each cue is produced by some particular geometrical aspect

of the scene and therefore is informative about this property, but it might not be

informative for other ones. As a result, a given property is not equally specified by
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cues, and computations based on any one cue may not be equivalent for recovering

different shape properties.

I believe that the key to understanding shape perception is the analysis of the

information conveyed by the cues. Researchers have failed to identify the relevant

information that the visual system uses to estimate shape. Most of the initial research

attempted to expand the number of identified sources of information. As a result, the

number of identified cues increased but without actually increasing the understanding

of the problem. At a certain point, as Epstein (in Cutting & Vishton, 1994) said,

“the most curious fact about psychological approaches to the study of layout is that

its history is little more than a plenum of lists.”

In this work, I will analyze a short list of cues too, but I will not only attempt to

create a taxonomic distinction. I propose a new way of looking at cues in order to

understand how they are combined and how the visual information is represented in

the brain. If this approach is proven to be correct, not only would lists of this kind be

useful, they would also become necessary to understand cue combination and shape

perception. Previous works of this type were limited in two ways (an exception is

Bülthoff & Mallot, 1990): they analyzed one cue (i.e. Todd & Mingolla, 1983), and

they proved either the inferiority of one property (Koenderink, Doorn, & Kappers,

1996) or the superiority of a second one (i.e. A. Johnston & Passmore, 1994c). This

work not only shows the relative influence of cues on three of geometric properties

that have been widely investigated in the literature, for the first time provides an
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explanation of the human performance based on a single mechanism.

Studies involving shape cues have often led to conflicting results. One application

of the present approach is a reformulation of the apparently incoherent and con-

tradictory results on cue combination. Many of the observed differences have been

attributed to dedicated rules of interaction for each cue pair (e.g. Bülthoff & Mallot,

1988, 1990). I propose, instead a simple general mechanism to combine cues that can

account for the different results. This mechanism simply differentiates cues depending

on the informational contribution of the cues in isolation. Once this factor has been

accounted for, all the cues interact lawfully as we will see below.

This work is organized as follows 3. In Chapter 2, I will analyze the informational

contribution of three cues: motion, texture and shading. I will describe how the image

signals are generated and their mathematical relation to different geometric properties

of shape. In particular, the shape properties I will consider include the relative depth

of different points on the surface, local surface orientation and local curvature. For

each cue, a description of the most common theoretical approaches to the problem will

be provided along with a summary of the psychophysical investigations that involve

perceptual estimates of the properties mentioned. The emphasis will be kept on the

informational limitations of each cue.

Chapter 3 summarizes the literature on cue combination. First, it will be shown

that the classical approach to the problem of cue combination is based on the estimate

3Some sections are preceded by a quote; it does not serve any purpose except my and perhaps
your enjoyment.
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of depth maps. I will discuss also why this assumption is needed for the classical mod-

els to work and what its implications are. Then, a new approach to cue combination,

the Intrinsic Constraint model, will be introduced as an example of a non-Euclidean

model of perception that does not need such an assumption. This model will serve

as a tool for understanding the experimental results.

In Chapter 4, I will use the preceding analysis of cues to simulate an optimal

observer. The goal of this simulation is to support the idea that cues have an infor-

mational contribution that depends on the shape property estimated.

In Chapters 5 through 8, I will describe a series of experiments aimed to demon-

strate that the visual system does not consider these cues to be equivalent in specify-

ing different aspects of shape. The effect that the cues described have on perceiving

different properties of shape will be explored experimentally. Participants viewed

computer-generated shapes created using motion, texture, or shading cues either in

isolation or combined. The shapes were first matched in terms of one property and

then compared for other properties. The judgment was based on three different as-

pect of the shapes: curvature, orientation, or slant. The task given to the participant

was to either choose which of two shapes had the greater magnitude of the property

or to modify the shapes so that the properties were perceived as equal. The goal of

these experiments is to demonstrate task significantly influences the responses of the

participants. The results show that the shape from which the property were judged

depended on the cues in the stimulus and the task given to the participant. Changing
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the task changes the properties judged on the same visual information. The shape

from which the judgments appear to be based on changes considerably with this

modification. These results are inconsistent with the existence of a unique Euclidean

representation of perceived shape. I propose that cues specify different properties

depending on the type of judgment required and therefore cue combination is deter-

mined independently for each property by the relative contribution of cues for that

property.

In Chapter 9, I will integrate the different topics covered to demonstrate that

cues are differentially informative about geometric properties of shape and that these

properties are represented independently by the visual system. As a consequence, cue

combination is different for each property and the resulting representations are not

necessarily consistent. Perceived properties of shape are not computed from a unique

representation, but are obtained directly. For this reason, different tasks are not based

on the same property and therefore can provide inconsistent response patterns.

On my desk there is an apple and I have the impression that I can see its shape

very clearly and consistently. Many researchers believe that the consistency in shape

perception is due to the Euclidean properties of shape captured by our perception.

Certainly our experience of the apple is consistent with these theories: the apple

appears to be a single entity and all its properties appear to be perceived veridically.

It seems that I perceive the shape of the apple as it really is in the Euclidean world.

This work shows that appearances can be misleading, the perceptual world is not
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veridical nor single. A closer analysis of the perceived shape of the apple indicates that

it is not constant, shape changes with the task. The geometric properties constituting

the shape of the apple are perceived independently and the task determines which

ones are used. The visual world is composed of its properties, that are not integrated

to achieve consistency but remain somehow independent. Perception is therefore

a description of the environment based on a vocabulary of properties. This work

indicates that the brain does not speak the Euclidean language. Each description of

the environment is created independently from the visual information and it coexists

with the others. Contrarily to my experience, rather than the shape of the apple

I PERCEIVE THE SHAPE PROPERTIES OF THE APPLE.



Chapter 2

Cues as Signals

9
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“No visual pattern is only itself” Arnheim (1954, p. 63)

As mentioned at the beginning of this work, the optic array produced by viewing

an object contains several sources of information about the object’s shape. These

sources of information are called cues 1. Some of the cues, defined as “pictorial”, are

available in a single static image; other cues, defined as “dynamic”, are defined by

systematic transformations of the projection; and others depend on the differences

between the stimulation of the eyes and are therefore binocular cues (see Cutting &

Vishton, 1995).

The visual system uses cues in the retinal image to compute an estimate of a

“property” of the environment. The first step in the chain of events that lead to

perception is the detection of the cue in the optic array. Contrary to common language

a cue does not only describe the form of information about shape, a cue is actually

a pattern in the optic array. The visual system has detectors distributed across the

optic array that are tuned to the type of pattern. The response of the detectors across

the optic array is the information the visual system uses to estimate the shape and

should be considered the “input” available to the module. The patterns in the image

and the measurements that follow are affected by errors. Imperfections in the optics

1One of the first terms used to define such information was ‘sign’ because it referred to the
implicit nature of the specification of the feature. ‘Sign’ was mainly used by Berkeley (1709) to
indicate surrogates that stand in place of some aspects of the world. The term ‘cue’ introduced
later refers to the implicitness of information in the stimulus. ‘Cue’ was introduced by James (1890)
from theater documents of the sixteenth century where the abbreviation Q for the Italian word
‘quando’ (=when) indicates the triggering of an action in response to information only hinted at.
Subsequently, Titchener (1906) /cite thought that information could cue perception as well, and
nowadays cues to depth are considered to be properties of the image that elicit the perception of
three-dimensional features of the world. (Cutting, 1986, p 40-41 261-262)
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of the eye, limitations in the neural detectors, and neuronal noise all contribute to

increase the level of noise in the measurement. For this reason, the detection of a cue

is often referred to as a “measurement” of a noisy “image signal”.

Although often overlooked, it is important to distinguish two types of error that

can occur: noise in the measurement versus sensitivity to the image signal. This

nomenclature has been borrowed from K. A. Stevens (1981) who distinguishes dif-

ferent ways in which an estimate can be erroneous and states which are independent

(precision, sensitivity and accuracy). Here I’d like to especially consider precision,

which is affected by the amount of noise in the measurement. Sensitivity, the ability

to detect a signal, is partially taken into consideration, but cannot be analyzed ex-

tensively because there are few investigations that analyze this issue. The problem

of accuracy will be addressed experimentally in Chapter 4.

Even in presence of measurement noise it is possible to estimate a property of the

environment, but this limits precision. Insufficient sensitivity has more extreme and

qualitatively different consequences. Even though the image signal is there, if the

visual system is not able to measure it, then it is not possible to make an estimate.

This situation is in turn different from one in which the visual system possesses the

ability to measure an image signal, but that signal is simply not present in the stimulus

(as in the case of single cue experiments). Here the magnitude of the measurement

is close to zero, but there still is an error due to noise.

Insufficient sensitivity and precision can explain why the structure from motion
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theorem proposed by Ullman (1979) cannot be applied to human perception. Even

though it is true that the position and displacement of 4 points in 3 views is sufficient

to determine the structure in 3D, this solution cannot be achieved by the visual

system (i.e. Todd & Bressan, 1990). The precision required in the measurement of

the positions and velocities of the points exceed the visual system’s limits. Moreover,

the visual system uses only velocity signals from two views to estimate structure

from motion probably because it is insensitive to acceleration signals available in

three views (Todd, Tittle, & Norman, 1995).

The second step to make an estimate of shape from the retinal information is the

interpretation of the image signals. Image signals are created by retinal projections

of 3D shape, but what the visual system does to invert this projection, and what

aspects of shape can be recovered still remains unknown (this is part of the quest of

this dissertation). In this work I consider especially three metric aspects of shape:

depth, slant, and curvature. Different results indicate that these may not be the right

surface descriptors for the visual system. However, the cue combination literature uses

mostly tasks that require the evaluation of different aspects of metric shape. I chosen

these properties only as a tool to investigate perceived shape without assumptions

about their ecological validity.

The difficulty in the computation of a property is different than the effect of noise

in the measurement discussed above, but it is also affected by this noise. In fact, a

property might not be estimated correctly in two cases:
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• if the measurement contains a level of noise that makes the computation im-

possible, as seen above, or

• if the measurement is done correctly, but the computation is impossible because

mathematically underdetermined.

Even if the visual system can pick up some relevant information from the image

with sufficient accuracy, this signal might be insufficient to make an estimate if taken

alone. It might well be that the mapping from the 3D world to the image signals

cannot be inverted because it is an ill-posed problem (Clark & Yuille, 1990; Backus &

Banks, 1999). The visual input is “inadequate” for a correct and unbiased estimate

because the information available is ambiguous and must be supplemented by the be-

holder (Berkeley, 1709). In this case, the estimate of a property by the visual system

is sometime described as a matter of guesswork (Helmholtz, 1910) or generation of

“perceptual hypotheses” (Gregory, 1968). Koenderink (2001) refers to the assump-

tions made by the observer as the “beholder share”(Gombrich, 1974), the part of the

process where the observer can intervene. He underscores that the more informative

the pattern is, the less one has to guess.

I believe that this problem is extremely important to an understanding of human

perception. As we will see below, for some signals there exists a simple mapping from

the magnitude of the measurement to a property of the world. For other signal, the

estimate requires a more complex measurement or a more complex computation. Gib-

son (1979) stated that the world provides sufficient information for an active observer
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to determine the perceivable properties of the environment without supplemental in-

formation or guessing. Empirical research with an arbitrarily reduced stimulation is

questionable because it forces the visual system to operate with less information than

in the normal environment. The information can be manipulated experimentally only

when “the essential invariant be isolated and set forth” (p305 Gibson, 1979). There-

fore it is not possible to conclude anything about the behavior of the visual system

from the usual psychophysical experiments. I believe that he was right in saying

that there is sufficient information for the perception of properties, especially if it is

provided by multiple cues. In particular, it should be defined what properties of the

environment are perceived from each of these cues. I do not agree on Gibson’s refusal

of single cue experiment, because although they do not provide the correct informa-

tion for veridical perception, they can be used to analyze the information provided

by the cues.

But let’s go in order. To understand how perceived shape is achieved it is neces-

sary to analyze what patterns to measure, the image formation process, and how the

signals are measured and used by the visual system. This will give us an idea of what

information about shape is carried by each of the cues. It is important to spell out that

this analysis indicates only what the relations between image signals and shape are

from a mathematical standpoint. It would still remain to be determined whether the

human visual system uses the measure, whether the measurement is precise enough,

and whether the computation performed is similar to the one hypothesized. To test
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this relation between signal and estimate, it is necessary to establish whether the mea-

sure responsible for the estimate is the hypothesized one or a different one (that is

either related to the a different surface property or a different relation exists). More-

over, it is necessary to establish which 3D property is recovered from the information

(K. A. Stevens, 1981).

An example that illustrates the problem we are dealing with is Gibson (1950)’s

proposal that the measurement of texture density is the key in the specification of

slant. There are different questions that must be addressed. First of all, there is the

question of whether slant can be reliably perceived. It has to be determined that the

slant is a perceptually meaningful property of the environment. High reliability in the

judgments are usually taken as indication that a property has perceptual importance

(Lappin & Craft, 2000). The presence of independent aftereffects of a property are

also taken as an indication of perceptual coding (as the independence of the slant

aftereffect from distance Berends, Liu, & Schor, 2005). Second, it has to be proved

that relation between texture density and slant is the fundamental one by ruling out

every other type of information in the stimulus. To be able to prove this relation,

it is necessary to isolate the density pattern in the image and make it independent

from other possible measurements. This has been proven to be quite difficult to do

experimentally (see K. A. Stevens, 1981, for a review). Only after more than twenty

years, was it established that the density gradient is not used by the visual system.

Third, it has to be determined whether the visual system can detect the texture
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density with sufficient reliability.

2.1 Motion

“Never mistake motion for action” Ernest Hemingway

The relative motion between an observer and the world creates a pattern of optic

flow that can be a source of information for the perception of objects (Gibson, 1979).

In fact, classical approaches have proven that the visual system makes use of such

information to estimate 3D shape (Wallach & O’Connell, 1953; Ullman, 1979). How-

ever, these first formulations stated that the visual system uses all the information

available in the stimulus, and that performs a correct mathematical analysis produc-

ing a veridical estimate of motion and shape of the projected object by making few

assumptions (Koenderink, 1986). The various models that embrace this approach

differ in terms of the type of geometrical description of the perceived shape and the

assumptions used by the visual system. Several assumptions have been proposed,

among others there are: rigidity (Ullman, 1979), smoothness of the flow field (Hil-

dreth, 1984), fixed-axis motion (Hoffman, 1986), and rotation as a constant angular

velocity (Hoffman, 1985).

As mentioned above, evidence has been accumulating against this approach. The

visual system does not use all the information contained in the stimulus. For example,

the visual system makes use of the velocity information alone and does not require

the second order temporal derivatives of the optic flow for the perception of shape
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(Todd, Akerstrom, Reichel, & Hayes, 1988; Todd & Bressan, 1990; Todd & Norman,

1991; Liter, Braunstein, & Hoffman, 1993; Domini & Braunstein, 1998). In fact, the

perception of shape from motion information is the same even when only two views

are presented to the subjects and not three as required by the theorem (Todd &

Bressan, 1990; Todd & Norman, 1991; Todd et al., 1995). Perceptual performance

improves very little, or not at all, if additional frames are added to an apparent motion

sequence composed of only two frames (Liter et al., 1993; Norman, 1993; Hildreth,

1984). In this case, the information available to the visual system is not sufficient

to recover the correct Euclidean shape (for a review see Norman, 1993). Infinite 3D

structures related by an Affine stretch along the depth dimension are consistent with

the stimulus. Consistent with this limitation, Todd et al. (1995) proposed a theory

about shape representation based on Affine rather than Euclidean geometry.

If forced to choose a unique estimate from these infinite solutions, the visual

system relies on the use of a heuristic process (Domini & Caudek, 1999) that does

not guarantee a mathematically correct solution, but provides a good approximation

in most conditions (Braunstein, 1994). The perceptual result is systematically related

to some stimulus variables even if it does not match the Euclidean three-dimensional

structure. Different patterns in the optic array can be the key information used by the

visual system: the extension of the projection (Caudek & Proffitt, 1993), the range

of velocities in the image plane (Liter et al., 1993), or some other local component

of the optic flow like local deformation (Domini & Caudek, 1999; Todd & Perotti,
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1999). This will be shown in more detail in the next section. A new line of research

developed from these ideas, that examines the most reliable sources of information

in the optic flow are, and the relationship between the information and the perceived

shape is (i.e. Domini & Caudek, 1999).

2.1.1 Image formation

The relative motion between an observer and a three-dimensional surface rotating

about an axis can be described as illustrated in Figure 2.1. A coordinate system

(x, y, z) can be located at the viewing point with the z axis corresponding to the

viewing direction. To simplify the analysis, the situation considered in all the subse-

quent text is limited to a rotation ω about a vertical axis passing through the point

(0, 0, d). The point P = (x, y, z) can be also expressed as P = (x, y, zr−d) to simplify

the calculations, where zr = z − d is the distance of the point in depth from the axis

of rotation. The point P projects to (u, v) = (xf
z

, yf
z

) in the image plane Φ at a

distance of f from the origin. The projected point can also be expressed in terms of

the horizontal and vertical visual angles (αu, αv) = (arctan u
f
, arctan v

f
) that for small

portions of the visual field becomes simply (αu, αv) ≈ (u
f
, v

f
) ≈ (x

z
, y

z
).

After the rotation, the coordinates of the point P becomes P ′ = (x′, y′, z′) =

(x cos ω−zr sin ω, y, d−zr cos ω+x sin ω) that for small rotations can be approximated

to P ′ = (x′, y′, z′) ≈ (x+zrω, y, z+xω), that in visual angle is (α′u, α
′
v) ≈ (x+zrω

z+xω
, y

z+xω
).
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In the image plane Φ, the projected velocity can be expressed as the temporal deriva-

tive of the horizontal coordinate
•
u that corresponds to

•
u ≈ (x′)f

z′ − (x)f
z
≈ (x+zrω)f

z+xω
− (x)f

z
.

If expressed in visual angles, this relationship becomes
•

αu ≈ x−zrω
z+xω

− x
z
. For small

stimuli, the term xω is negligible because it represents the perspective effect and the

equation simply becomes

•
αu ≈ −zrω (2.1)

This equation indicates that the velocity measured in the retinal image is propor-

tional to the distance between the point and the axis (z−d) and the angle of rotation

ω.

Now I will use the relation between image transformation and 3D transformation

to derive the image signals associated with different properties of shape. Let’s first

consider zeroth order information. If equation 2.1 is applied to two points P1 and

P2, it is possible to express the depth separation as being related to the difference

in angular speed according to z2 − z1 ≈
•

αu2

ω
− •

αu1

ω
. So, the relative velocity between

points is related to the magnitude of rotation and the depth separation according to:

∆Z ≈
•

αu2− •
αu1

ω
(2.2)

This relation does not allow to estimate depth separation from image signals unless

the visual system provides a value for the angle of rotation. The visual system may
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Figure 2.1: The rotation of a point P around a vertical axis creates a pattern of
motion in the image plane Φ. The velocity with which the projected point moves on
the image plane can be used to estimate the point’s distance in depth from the axis
of rotation

assume it, or estimate it from the image signals. In this case, the observer needs only

to measure the velocity signals to obtain an estimate of the relative depth of points.

This analysis is similar to the conclusions drawn by Perotti, Todd, Lappin, and

Phillips (1998). They state that when an object rotates rigidly in depth under or-

thographic projection, the formula z = −V
√

x
accel

can be applied to estimate depth

directly from the values of speed and acceleration (up to a reflection in depth)2. The

estimate of Euclidean distance in depth between points requires the measurement of

the second order components of the optic flow. If this information is not detectable,

2in perspective projection
•

αv can be used to solve this ambiguity
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as discussed above, the visual system could recover the relative depth of point only up

to an Affine transformation in depth (see Koenderink, 1990; Todd & Bressan, 1990).

To analyze the first order geometrical properties of surfaces, namely the local

orientation of the surface, we will consider that a smooth surfaces S can be locally

approximated by planar patches defined by z = gxx + gyy + z0. Here gx and gy

are the horizontal and vertical depth gradients and z0 is the distance of the point

from the origin. If this formula is expressed in terms of visual angle by substituting

(αu, αv) ≈ (u
f
, v

f
) ≈ (x

z
, y

z
), we obtain z = gxαuz + gyαvz + z0. I will approximate the

optical projection of points as composed of a parallel projection to the image plane

Φ and a perspective projection to the origin. This state of things can be rendered

mathematically by substituting f for z on the right side of the equation so to obtain

z ≈ gxαuf + gyαvf + z0. The velocity field in this case is described by the formula

•
αu ≈ ω(d− z0)− ωgxαuf − ωgyαvf (2.3)

These three factors evidence the classical decomposition of the linear velocity field in

its spatial derivatives:

•
αu ≈ •

αu0 +
•

αuu αu +
•

αuv αv (2.4)

where the term
•

αu0 is the traslatory component and the velocity gradients
•

αuu and

•
αuv can be grouped in the term def =

√
•

αuu

2
+

•
αuv

2
=

√
(ωgxf)2 + (ωgyf)2 (Domini

& Caudek, 1999; Liter & Braunstein, 1998; Todd & Perotti, 1999).
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Figure 2.2: A patch of the surface S that rotates around a vertical axis generates
a linear velocity field described by the three components

•
αu0,

•
αuu and

•
αuv depicted

above

This formulation of the velocity field in terms of its spatial derivatives, allows to

compute the “tilt” τ = gx

gy
of patch. In fact, by multiplying each term of the fraction

for ωf the formula can be expressed as τ = ωfgx

ωfgy
=

•
αuu
•

αuv

, a quantity of the velocity

field that uniquely specifies the tilt of the surface.

On the other hand, the “slant” of the surface, defined as σ =
√

g2
x + g2

y, is not

univocally specified by the velocity field because, since ω is unknown, the relation
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with the velocity field component def can be expressed only as

def =
√

(ωgxf)2 + (ωgyf)2 = fω
√

g2
x + g2

y = |fωyσ| (2.5)

In this case, the information provided by def is ambiguous if the amount of ro-

tation is unknown (as we’ve seen above there are infinite solutions). In (Domini &

Caudek, 1999) the authors proposed that the ambiguity of the velocity field could

be solved by selecting, among the infinite pairs of slant and angular velocities com-

patible with a given def, the most likely one. In particular, they have shown that, if

the a-priori distributions of slant and angular velocity are uniform and limited, then

the a posteriori probability distribution p(ωy, σ|def) has a maximum for the pair of

values ω∗ = k
√

def and σ∗ = 1
k

√
def . So, if it is possible to separate σ and ω with

an heuristic process or it is possible to estimate ω either with a global analysis of the

information across the stimulus (as proposed in Di Luca, Domini, & Caudek, 2004),

then it is also possible to use local measurements of the optic flow to estimate of slant.

Moving from first order descriptors (local orientation) to second order descriptors

of local shape, it is reasonable to expect that since the local orientation of a smooth

surface is related to the first spatial derivatives, second order properties of shape will

be related to second spatial derivatives of the optic flow. In fact, if the shape under

analysis is expressed as a Monge surface with the formula z = S(x, y) then the optic

flow is V (x, y) = S(x, y)ω where the second order spatial derivatives are Vxx = ωSxx,

Vxy = ωSxy, and Vyy = ωSyy.
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The shape can be described locally using the values of the principal curvatures.

The principal curvatures are the maximal and minimal directional curvature measured

at a given point. Interestingly, the direction where these two extreme values are found

are necessarily orthogonal to each other. The direction with maximal curvature is

tilted by a certain amount with respect to the coordinate axes x and y. This angle

can be easily calculated from the optic flow pattern according to the formula

cot(2ακM
) =

1

2

(
Sxx − Syy

Sxy

)
=

Vxx − Vyy

2Vxy

(2.6)

So in the same manner as for tilt, the direction of maximal curvature can be obtained

from a image measurement without any free parameters. The relation between the

magnitude of each of the principal curvatures and the retinal motion, on the other

hand, is expressed by the formula

κx =
1√

1 + S2
x + S2

y

(
Sxx

1 + S2
x

)
=

ω2Vxx

(
√

ω2 + V 2
x + V 2

y )(ω2 + V 2
y )

(2.7)

Notice that as happened with slant, in this case the term ω must also be estimated

from the equation in order to make an estimate of the magnitude of curvature.

For example, Mamassian, Kersten, and Knill (1996) noticed tat the curvature

ratio is an invariant relationship, a description of the local shape of the surface. He

called this quantity the “shape characteristic” (figure 2.3) and showed that its value

for a slanted patch with principal curvatures aligned to the coordinate axis is related

to the velocity field by the equation κx

κy
= Sxx

Syy

(
1+S2

y

1+S2
x

)
= Vxx

Vyy

(
ω2+V 2

y

ω2+V 2
x

)
. He also showed

that when the normal to the surface is parallel to the viewing direction the shape
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characteristic can obtained from the velocity gradient, eliminating the rotation term.

In fact, in this case the ratio of curvature can be computed as

κx

κy

=
Vxx

Vyy

. (2.8)

For non frontoparallel patches, the resulting error due to using this formula is small

for a wide range of slants (see Dijkstra, Snoeren, & Gielen, 1994). So, the shape

characteristic can be estimated from the image signal with no free parameters for

most patches.

Similarly, the “shape index” defined by (Koenderink, 1990) as S = −1
π

arctan kM+km

kM−km

can be used as a descriptor of the local shape as whown in figure 2.3. The shape index

can be computed from the optic flow as S = −1
π

arctan
Vxx(1+V 2

y )+Vyy(1+v2
x)

Vxx(1+V 2
y )−Vyy(1+v2

x)
. If the patch

is locally frontoparallel the equation simplifies to

S =
−1

π
arctan

Vxx + Vyy

Vxx − Vyy

, (2.9)

therefore there is a direct relation between the second order derivatives of speed and

the shape index.

The other factor that is commonly used to describe local shape is called curved-

ness and is defined as C =

√
k2

m+k2
M

2
(Koenderink, 1990). Curvedness captures the

magnitude of curvature at a point. Similarly to what has been said about depth

and orientation, the absolute magnitude of curvature is not uniquely specified by the
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Figure 2.3: Top: Values of the shape characteristic for the two principal curvatures.
The sign of the shape characteristic is related to the sign of the two curvatures:
negative for hyperbolic shapes and positive for elliptic ones. It is 0 if the local shape
is flat in at least one direction. Bottom: The value of the shape index, in the same
manner as the shape characteristic, is zero if either one of the curvature is null, but
also when the two curvatures have same magnitude but opposite sign. Then it acquire
a positive sign for convex surfaces and negative for concave ones.



27

velocity field as in the case of curvedness. Differently, since shape characteristic and

shape index are a ratio of principal curvatures, they are independent from the amount

of rotation and can be therefore estimated using only local information in the optic

flow.

In this section I analyzed the process of image formation in order to understand the

relation between image signals and geometric properties of shape. From this analysis

it is evident that local depth, slant, and amount of curvature can be estimated from

local measurements of the optic flow if two conditions can be satisfied: image signals

(velocity difference, deformation, second order spatial derivatives) can be detected

and measured, and the amount of rotation ω can be accounted for either by heuristic

process or by a non local computation involving the whole object. On the other

hand, qualitative shape can be estimated if second order spatial derivatives can be

measured, without knowing the rotation.

2.1.2 Psychophysics

Hogervorst and Eagle (1998) report some estimates for the uncertainty in the esti-

mate of speed. The authors report that it is often assumed that the uncertainty in

the retinal position of a feature is negligible, since in optimal condition the Weber

fraction of a three-lines bisection task is under 2% (Westheimer & McKee, 1979).

Errors in the measurement of retinal velocities are directly reflected on the estimate

of depth. (De Bruyn & Orban, 1988)offer an estimate of the human sensitivity for
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speed measurement. For speeds up to 64os−1, the measurement noise is characterize

by σs = 0.049 + 0.035S[os−1].

The data from Perotti et al. (1998) and Lappin and Craft (2000) shows that

observers do not obtain reliable information about the metric curvedness of surfaces.

However, they are sensitive to the qualitative shape of the surface defined by the

ratio of the two principal curvatures. This means that the visual system is sensitive

to the second order derivatives required for the estimates of local shape, but it does

not posses the ability to account for the amount of rotation as it was said above.

2.2 Texture

A textured surface S projects an image in which the texture pattern has systematic

distortions that depend on the viewing direction, distance and other aspect of the

projection. This deformation of texture contains information about these properties.

Gibson (1950) introduced the term “texture gradient” referring to the systematics of

the patterns of optical texture across optic array. Texture gradients, in fact, contain

information because the pattern of texture on physical surfaces is repetitive or regular.

To the extent that this holds, the differences in patterns of optical texture across the

optic array correspond to the projective effect of the arrangement of the surfaces. It

is possible to use these variation of texture in different locations to infer variations in

depth and surface orientation.
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Texture information can be generally divided in to two categories. The first type

of information is due to the projective effect on the distribution of texture across the

surface. The second type of information is related to the shape of the individual

texture elements. Let’s analyze these two components in order.

Texture distribution across the image does not require the presence of identifiable

features; the information is contained in the statistical pattern of the whole texture.

The projection has different effects on the texture distribution and these effects are

not completely independent and easy separable, so it is rather hard to identify and

isolate the different texture distortions. For this reason, definitions are not precise

in this regard. Two types of nomenclatures will be introduced here, and in the next

section the information contained in the subdivision will be spelled out.

K. A. Stevens (1981) distinguished two independent effects of projective transfor-

mations of texture: scaling of texture size due to differences in viewing distance, and

compression of texture due to orientation of the surface in depth with respect to the

line of sight.

Cutting and Millard (1984) adopted a different view in the categorization of the

information provided by the texture. They identified three independent constraints

that characterize the regularities of many textured surfaces: texture elements are

approximatively the same size, are evenly spaced and are relatively flat. When a

surface is viewed in perspective each of these constraints produces an image gradient

(Gibson, 1950) along different dimensions.
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This subdivision, however does not fully capture the information available to the

observes (see Gärding, 1992; Knill, 1998). Here we will define gradients as:

• Scaling gradient: if the size of the elements is constant on the surface, the size

of the projected elements is inversely proportional to their distance. The scaling

component of the perspective projection can be used to derive depth and surface

orientation. It is an isotropic transformation of the texture (Witkin, 1981) and

according to K. A. Stevens (1981) the slant and curvature of the surface can

be derived from the local depth map obtained directly from the size of the

elements.

• Compression gradient: if the texels are flat with respect to the surface, the

difference in viewing direction form the surface normal produces a projective

foreshortening. Compression of texture carries different information from the

size gradient, it specifies the local surface orientation, but to derive depth would

require integration of orientation into a coherent surface.

• Density gradient: Density is a scalar property of an area of the image, the

spacing between elements varies with direction. If the distance between features

is constant across the surface, the density on the image is related to surface

distance. K. A. Stevens (1981) argues that the difference in density would not be

a useful measure for computing distance or surface orientation because it varies

with both depth and orientation. To see this point, it is possible to anticipate the

analysis of the image in the next paragraph and express the factors influencing
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Figure 2.4: The different types of texture gradients, nomenclature and the mathe-
matical formulation according to Garding (1992). The horizontal axis of the ellipses
represents the magnitude of m and the vertical axis the magnitude of M (see further).

the density of texture elements on the image as % = %sz
2/ cos σ, where %s is the

density of texture on the surface (K. A. Stevens, 1979). Both z and σ contribute

to this value at every point. Similarly, the gradient based on this quantity is

determined by both slant and curvature.

A second type of information available from the optical projection of a textured

shape is the effect that the projection has on single elements composing the texture,

what Gärding (1992) calls first-order information. Most of the psychophysical work

has relied on textures composed of discrete elements called texels. It is clear that this

type of information is the more relevant and easier to detect. It carries information

about different aspects of shape. The perspective effects on texels can be described

using the same framework described above.

• The geometric effect that creates the compression gradient, also generates the
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difference between the actual shape of texels and their projected shape. The

amount of compression from a point in a particular direction on the surface

depends on the angle subtended between the line of sight and the direction

analyzed. Elements that are circular on the surface project into ellipses when

the surface is viewed at an angle. It is the most prominent effect of the different

orientation of the surface relative to the line of sight.

• The size of texture elements corresponds to the scaling component of the per-

spective projection. It carries information about depth.

2.2.1 Approaches

There have been several attempts to relate 3D properties of surfaces with image

patterns (or texture measurement K. A. Stevens, 1981) especially for the ground

plane. The first, classical analysis considered only distance and orientation as possible

3D properties, but recently curvature has been introduced as well.

The information contained in the texture pattern of an image is complex because

it is probabilistic in nature and relies on making assumptions about the original

pattern of texture on the object’s surface. Two general assumptions used extensively

are texture “isotropy” (the texture has the same characteristics in every direction) and

“homogeneity” (the properties of the texture are constant across the surface) (Malik

& Rosenholtz, 1997; Rosenholtz & Malik, 1997). Statistical variation in texture

can be described using these terms to quantify the level of noise in the incorrect
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interpretation of variation in optical texture as due to 3d structure.

One way to operationalize isotropy is to measure “compactness”: the amount of

area contained in a closed contour divided by the square root of the perimeter length

(Ikeuchi, 1984). This measure can be used to derive the 3D shape of object because

by finding the maximally compact shape in the projection. This shape is assumed to

be the “simplest” version of the texture. The transformation that maps the simplest

texture to the projected texture indicates the slant of the surface at every point of

the image.

A related approach that does not require that individual texture elements are

explicitly identified was proposed by (Witkin, 1981). It assumes that orientations of

luminance edges in nature have an isotropic distribution. Deviation from this equal

distribution is due to the the projective effect of the orientation of the surface. The

direction where the edges are less frequent on the image corresponds to the tilt, the

ratio between e maximal and minimal occurrence of borders relates to slant.

Similar methods use the same logic to infer surface orientation from the power

spectrum at low and high luminance frequencies (Jau & Chin, 1990) or the second

order spatial moments of the local spectra (Gärding, 1992) or of the texels (Knill,

1998).

Local parallelism of image features (K. A. Stevens, 1981) or spatial frequencies

(Super & Bovic, 1995) can be also used as a constraint in feature based models to

be substituted to the isotropy constraint. Locally parallel orientations, can only be
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preserved in the image projection when the Gaussian curvature is zero, therefore these

method find a perfect solution only for plane or cylindrical surfaces.

An assumption that can be made (and that has been used extensively to make

measurements on textures) is homogeneity : the statistical distribution of texture

properties on the surface. (Aloimonos & Swain, 1988) assume uniformity of space

in their model to derive slant from the gradient of density. This approach does

not assume isotropy and is therefore more robust. (Gärding, 1992) and (Malik &

Rosenholtz, 1997) used homogeneity more directly to find areas in the image that

can be matched in the image spectrum up to a geometrical transformation. The

type of transformation needed to map the areas is used to constrain the difference in

orientation and distance.

The problem of the homogeneity constraint is the measurement of statistical prop-

erties of the texture (K. A. Stevens, 1984). Deviations from homogeneity can be cal-

culated only over large regions of the image. Therefore, this constraint can be applied

only to surface with small changes in orientation. Stevens argues that this spatial

limitation create difficulties in using gradients as cues. The local properties might

be more informative. Isotropy is less affected by spatial restriction than homogeneity

is, because it is a local constraint. In situation containing high amount of noise, the

use of this constraint is thus more efficient. However, the limits of this constraint

are due to the existence of many natural anisotropic textures (like wood grain). Size,
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density and compression gradients are useful only by applying the constraint of ho-

mogeneity to different properties of the texture. Isotropy is the constraint used for

local compression of shape or orientation (including asymmetries of the spectra).

Another assumption common to most of these approaches, that is seldom modeled

mathematically and will be mention here just for completeness, is that texture is flat

and coplanar with the surface it belongs. There is a class of natural surfaces for which

this constraint does not hold. Surfaces that have a textured relief are constituted by

regular perturbation perpendicular to the global surface.

2.2.2 Image formation

Two processes give rise to the information in the image. The first is the process

that generated the texture on the surface and it is reflected on the regularities of the

pattern. The second is the optical projection which map surface texture to image

textures. In the following analysis, from Gärding (1992), we will see the effect of

these processes.

When a surface pattern is projected on the optic array, the local metric structure

is distorted systematically. The distortion of the structure is purely geometric and

independent of the surface pattern. However, the pattern of the surface is what allows

a measurement of certain component of the distortion in the optic array.

Gärding (1992) illustrates the geometry of image creation by projecting the surface

S on a viewsphere Σ with unit ray (see figure 2.5). He defines the projection map F
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of S to Σ as F (p) = r(p) = r(p)p where p is a unit vector from the focal point to a

point of the unit sphere and r(p) is the distance along the visual ray from the focal

point through p to the point r = F (p) on the surface S.

The local change of metric depends only on the linear part of F∗, the derivative

map of F . F∗ is the projection of the image on σ to the surface S; it maps tangent

vectors of Σ at p to tangent vectors of S at F (p). For example a small segment dx in

the image maps to the segment du = F∗dx on the surface. The length ratio between

the two segments du/dx depends on the surface distance and orientation. Defining

the tilt t as being a unit vector tangent to σ at p with direction of the gradient of the

function r(p), it is possible to create an orthonormal basis (tb) for a tangent plane

at p where b = p× t. With this basis, it is possible to describe the linear map F∗ as

F∗ =




r/ cos σ 0

0 R


 =




1/m 0

0 1/M




where m and M are the inverse eigenvalues of the derivative map F∗ (m < M)

depicted in figure 2.5 and called the “characteristic values” (for the derivation see

Gärding, 1992). m corresponds to the ratio of length in the image in the tilt direction

and on the surface in the same direction. M is the analogous ratio in the direc-

tion orthogonal to the tilt. This description shows that compression of length (the

length M in the unforeshortened direction) is inversely proportional to the distance r.

Moreover, compression in the tilt direction m is inversely proportional to the distance

r divided for the cosine of the slant σ. To summarize this part, by measuring the

distortion of local surface geometry it is possible to obtain the quantities r = 1/M ,
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σ = arccos(m/M) and t = ±v1, where v1 is the eingenvector corresponding to m.

An analogous estimate of t would be to find the direction of maximal magnitude of

the directional derivative of the characteristic values values.

By using this description, foreshortening can be defined as the ratio of projected

lengths measured in the tilt and perpendicular directions. This projected ratio is

related to slant independently from curvature, but to be measured, isotropy is a

necessary assumption.

This analysis considered local effect of projection on texture. Gibson suggested

that spatial variation of projective distortion are informative for the surface shape

as well. The scheme proposed by Gärding (1992) offers a way to describe some

of the gradients mentioned in the section above as well. He expresses the ”simple

distortion gradients” as such: the scaling gradient ξ2∇M (or major gradient), the

compression gradient as ξ1∇m (or minor gradient), the foreshortening gradient ∇ε =

(ξ1/ξ2)∇(m/M), the area gradient∇A = ξ1ξ2∇(mM), and the density gradient∇ρ =

ρS∇(1/(mM)). These gradients contain unknowns ξ1ξ2ρS that can be eliminated by

normalizing using (∇f)/f. This normalization allows for estimates without relying on

prior information. By defining the common factor f =




rκt/ cos σ

rγτ


 where r is the

distance, σ is the slant, τ is the tilt, κt is the normal curvature in the tilt direction

and γτ is the geodesic torsion of the surface in the tilt direction. It is possible to

express the normalized gradient above as:
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s

Figure 2.5: Top: Surface geometry according to Garding (1992). The mapping F
creates the correspondence between the two orthonormal basis T B and t b, as well
as between the two segments dx and du. Bottom: F is visualized as the projection
of a unit circle on the image plane Φ tangent to Σ in p. The characteristic values m
and M correspond to the halflenghts of the ellipse’s axis.
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The complete local surface curvature (in terms of normal curvature κt twist γτ ,

and Gaussian curvature) cannot be determined by distortion gradients alone. The

usefulness of any texture gradient is determined by the information it contains about

the surface and possibility to measure it. The compression, foreshortening, area,

density gradients all contain similar information about shape, but they differ in the

relative weight of the curvature. At a point of known orientation on a curved sur-

face any of the gradients is informative about scaled curvature, whereas for a flat

surface each of them determines the orientation uniquely. All the gradients depend

on curvature and geodesic torsion, with the exception of the scaling gradient which is

independent from local shape. Only scaling gradient ∇M
M

can be used to estimate the

orientation σ for surfaces with unknown curvature if spatial invariance is assumed.

2.2.3 Psychophysics

Gibson (1950) claimed that relative texture density is proportional to the relative

distance of the corresponding points on the surface (z1/z2 = %1/%2). This formulation

is actually incorrect, because texture density is a function of distance, but also of

foreshortening as well (see K. A. Stevens, 1981). Other classical formulation establish
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relation between image patterns and distance. However, the distance is expressed in

terms of distance along the ground, therefore from the observer feet.

The perception of slant has been initially attributed to the density gradient

(Purdy, 1960; K. A. Stevens, 1979). In fact, the following equation holds: tan σ =

(∇%)/3%, where % is the texture density at one point in the image when surfaces are

planar and textures are uniform. Subsequently, K. A. Stevens (1981) proposed a sim-

ple model that used the value of local foreshortening m/M to estimate orientation

and the major axis M to estimate local depth. This model is in accordance with the

analysis made here, but it is also incomplete as my analysis is, because does produces

inconsistencies for anisotropic or spatially inhomogenuos textures. Nonewithstanding

these limitaion, this idea is supported by different findings.

Cutting and Millard (1984) compared the importance of the scaling (or perspec-

tive), foreshortening (or compression) and density gradients for the perception of flat

and cylindrical surfaces. Density gradient had only a minimal contribution to percep-

tion. The scaling gradient was important for flat surfaces and the foreshortening was

important for cylindrical surfaces. Buckley and Frisby (1993) found that the influence

of local foreshortening was significantly higher than the other types of information in

different cases. Todd and Akerstrom (1987) demonstrated that foreshortening is the

predominant information used by the visual system, but not the only one. When the

surface was shown in orthographic projection, so that there was no scaling gradient,

the perceived depth increased.
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J. Hillis, Watt, Landy, and Banks (2004) made a measurement of the sensitivity to

texture cues in the estimate of slant. They presented monocularly a Voronoi pattern

to the subjects and measured slant discriminability for the texture cue in isolation.

From these data it is clear that JND decrease with increase slant, since image signals

associated with the same difference in slant increases in magnitude and therefore in

detectability (Blake, Bülthoff, & Sheinberg, 1993; Knill, 1998).

Similar data is obtained by Knill (n.d.). He found that slant can be discriminated

away from the fronto-parallel only with angles from 29 to 46o. For slants higher than

70o, the discrimination thresholds decreased to 1.2 to 3.1o. This confirms that texture

only becomes more as the slant increases.

Gärding (1992) notices the lack of further investigation about the assumption that

surfaces are planar even though seldom surfaces on the real word are perfectly planar.

The planarity could, however, be assumed locally. Most of the image signals about

texture distortions that actually depend on curvature even for infinitesimal patches.

2.3 Shading

“The outlines and form of any part of a body in light and shade are

indistinct in the shadows and in the high lights; but in the portions be-

tween the light and the shadows they are highly conspicuous.” Leonardo

(1888)
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Shading patterns can be used as an independent cue for shape perception. The

search for a suitable algorithm that can derive shape from shading has been a central

problem in computer vision since its beginning. It is well known that the problem of

reconstructing a 3D surface from its image is ill-posed, under constrained (B. Horn &

Brooks, 1989) and the solution is not unique. Illuminant intensity, surface material

and the orientation contribute to the light pattern, and are confounded in a single

measurable variable. This problem is particularly evident when an image of an object

can appear to depict either a convex or a concave surface (Gibson, 1950), a situation

named the “Bas-relief Ambiguity”.

2.3.1 Image formation

Most of the studies involving shading used synthetic images of objects (there are

also exceptions like Koenderink et al., 1996). Syntectic images are created using a

simplified description of the optical laws of reflection called image irradiance equation

(B. Horn & Brooks, 1989). For a point p on a surface defined as the Monge surface

z = S(x, y) this equation determines the amount of light reflected toward the viewer.

The local orientation of the surface is described as the normal vector n = (p,q,1)T√
1+p2+q2

and the light direction shining on the surface is l = (lx, ly, lz). If the surface is matte,

so that the reflectance function is Lambertian, the image intensity is determined by

the image irradiance equation:

I = ρλ(n · l) (2.10)



43

where ρ is the albedo of the surface (the ratio between the reflexed and incident

flux of light) and λ is the light source Illuminance (flux per unit area of incident

light). Notice that if the patch considered points toward the illuminant and therefore

(n · l) = 1, the brightness in the image will be I = ρλ. If the surface has uniform

reflectivity, if such point is present in the image, by measuring the brightest point

one can estimate these parameters.

In the irradiance equation above, it is possible to substitute the values of the

elements in the vectors we can write (this formulation will be useful in the Chapter

4): I = ρλ plx+qly+lz√
1+p2+q2

. The first directional derivative of the image intensity in the

direction (dx/ds, dy/ds) for a distance s can be decomposed in the partial derivatives

in the direction of the coordinate axis. dI
ds

= dI
dx

dx
ds

+ dI
dy

dy
ds

. The directional derivative

can be calculate from the image irradiance equation obtaining: dI
ds

= d(ρλ(n · l)) =

ρλ(dn · l)+ρλ(n ·dl). Since the light source is assumed to be at a significant distance

from the surface, l is constant and then (n · dl) is zero. So we obtain

dI = ρλ(dn · l) (2.11)

This equation shows how the derivative of the image intensity in a direction depends

on dn, the difference in the normal vectors n at different points. This difference

corresponds to the curvature of the shape in the direction of s. Similarly, higher

order derivatives of the shape and of the intensity are related in the same manner

d2I = d(ρλ(dn · l)) = ρλ(d2n · l) + ρλ(dn · dl) = ρλ(d2n · l)
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The intensity on the image depends on the surface normal, and there are many

surface normals that yield the same image intensity. Partial derivatives of the image

brightness, in a similar way, depend on the partial derivatives of the surface normals,

and do not specify uniquely Euclidean shape when the range of all possible surfaces

is considered (Bruss, 1982).

B. Horn (1986) showed a possible way to calculate the curvature of the surface

from the gradient of luminance. His method aimed at calculating slant change in the

direction of the gradient of the reflectance map. He showed that in this case 3 the

difference in the orientation (expressed in terms of (p, q) as described at the beginning

of this section) can be calculated as:




dp

dq


 =




dI
dx

dI
dy


 ds

This equation allows to compute a property of the surface directly from a measure-

ment on the image without the need of additional assumptions. However, it is not

possible to determine the global shape of the surface unless the slant at a point is

known. From this point the shape of the surface can be extended in one direction

along a “characteristic strip”. Many of the assessment in computer vision utilize

this methodology. Alternatively, since the image brightness relates to the slant of

the surface, it is possible to minimize a functional in order to find a surface that is

compatible with the image provided.

3when ds is parallel to the gradient of the reflectance map ∇R(p, q)
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2.3.2 Psychopshysycs

Different studies of shape from shading often came to the conclusion that shading is

one of the weakest cues (Barrow & Tenenbaum, 1978; Mingolla & Todd, 1986; Todd

& D., 1989). But shading is another example of a cue that is not a cue to depth,

because it provides information useful to estimate only certain geometric properties

of shape. It is important to discriminate the various results in terms of the property

that was required by the task.

The results of different studies, in fact, start to make more sense once it is ac-

knowledged that depth information is not specified by image signals. In fact, the

studies that found lower perceptual performance are mostly based on judgments of

perceived depth from shading (Bülthoff & Mallot, 1990). Moreover, the error obtained

by reconstructing the surface from judgments other than direct estimation of depth

is smaller (Koenderink et al., 1996). Different authors in fact suggest that shading

is not actually a cue to depth (Bülthoff & Mallot, 1990; Mamassian et al., 1996).

Depth information cannot be obtained directly, but must be obtained by integration

of surface orientation, a computation very sensitive to noise in the measurement of

the image signals. So, as we saw in the section about the image formation, if slant is

perceived accurately, the errors in the reconstruction of the perceived shape should

be low. On the contrary, investigations requiring the judgment of local orientation

through a direct estimate of slant and tilt in degrees (Mingolla & Todd, 1986) or by

using gauge figure on the image (Koenderink, Doorn, & Kappers, 1992) proven that
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the orientation is perceived consistently (small variability), but still quite inaccurately

(large bias). The same result is obtained by Bülthoff and Mallot (1990), which found

that shape comparisons lead to a more consistent results, but where the shape is still

underestimated.

A. Johnston and Passmore (1994a) suggest that an estimate of depth from a

shaded image requires evaluating attributes that are not explicit to the visual sys-

tem. They found, as support to this, that the Weber fractions for curvature discrim-

ination are comparable to the one obtainable with stereo information, whereas for

the discrimination of slant such threshold increases of a factor of 10 (A. Johnston

& Passmore, 1994c, 1994b). This result indicates how the property investigated and

the task is significantly affecting performance as we will see in more detail in the

next chapter. The authors suggest that there are two ways of estimating curvature

(A. Johnston & Passmore, 1994a). One possibility is to encode curvature directly

from image intensities. The second is to first encode surface orientation and depth

and then computing curvature by operating on this information (Carman & Welch,

1992). Their data supports the first of the two hypothesis, the visual system can

estimate local shape from image measurement without relying on estimates of slant.

Studies involving the estimate of shape were conducted mainly by investigating

shape index and curvedness (Koenderink, 1990; Mamassian et al., 1996). The results

indicate that there is a bias to perceive shapes as convex elliptic (Erens, Kappers,

& Koenderink, 1993; Mamassian et al., 1996). A small Weber fraction was reported
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in curvature discrimination tasks (as low as 0.1, A. Johnston & Passmore, 1994a)

indicating high consistency. Todd and Mingolla (1983) assert that perceived mag-

nitude of the curvature is underestimated and there is a small correlation between

simulated and perceived curvature. However, even though the researchers assert that

these results indicate that shading does not provide information about curvature, the

actual task was to choose among five profiles of a bump that depict the cross section

of the simulated surface. With this task it is in fact possible that participants did

not base their judgments on curvature, but on the amount of protrusion, therefore

assessing the depth extension of the surface.

Different factors influence the perception of shape from shading information. Il-

lumination conditions and reflectance properties of the surface significantly influence

the amount of curvature perceived. Lambertian surfaces lead to underestimation

whereas shiny ones generate an overestimation (Todd & Mingolla, 1983; Bülthoff &

Mallot, 1990).

Mingolla and Todd (1986) found that perceived orientation does not change when

the illuminant is more oblique. Other investigations, in contrast, found that the per-

ceived shape exhibits a systematic bias in the direction of the light source (Christou,

Koenderink, & Doorn, 1996; Koenderink et al., 1992, 1996). Perceived slant changes

in the direction of the illuminant by a magnitude of 4 degrees (Pentland, 1982; Todd

& Mingolla, 1983; Koenderink et al., 1996). This bias is consistent with a regres-

sion to the gradient of luminance that is reduced for high values of albedo. Curran
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and Johnston (1994) found that the discrimination threshold for slant increases with

elevation of the light source, whereas the threshold for curvature decreases. In a sub-

sequent study (Curran & Johnston, 1996) they also found that the magnitude of the

perceived curvature depends on the angle of illumination. Higher values of perceived

curvature are found when the light source is directly above the surface. Deviation

from this point cause a decrement of perceived curvature. The authors interpret their

results to be in accordance with the assumption of “light from above”. The visual

system, in fact, assumes that the light is coming from above in the interpretation of

shading patterns (Gibson, 1950; Yonas, 1979; Ramachandran, 1988) unless sufficient

information in the stimulus indicates the illuminant position. Explicit reports of the

estimates of the direction of illumination for very simple objects is very accurate

(Pentland, 1982; Todd & Mingolla, 1983). However, with complex surfaces, the per-

formance decreases significantly and there is no correlation between the estimation

illumination direction and perceived surface orientation (Mingolla & Todd, 1986).

2.4 Summary

In this chapter three cues have been analyzed in terms of the relation between ge-

ometric properties of shape and image signals. The optic array provides specific

information about the shape property with an accuracy that is related to the noise

in the measurement. Other properties can be computed, but their estimate will be
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Motion Texture Shading

Depth [mm] κV
(
=

√
x

accel(∗)V
)

(κM(∗)) only by integration

Slant [o] κ
√

Vs arccos m
M

only by integration
Curvature [mm−1] κVss only if slant is known κIs

Table 2.1: Information in the retinal image that can be used as a signal to estimate
the shape properties. (*) The visual system is not sensitive to this signal.

necessarily affected by a large amount of noise. The relation between each property

and the relative image signals is summarized in table 2.1 (κ is an unknown parame-

ter). This list indicates the image signals that can be measured for the perception of

shape. It is important to underline different aspects of these equations.

First, if the appropriate signal can be detected and measured by the visual system

it is possible to determine the shape property that is related to it. In this case the

estimate of the shape property can be made just by detecting the local pattern in the

image. Estimates that are not achieved in this way can be computed by integration

or derivation of other measurements across the image. However, the computation

is more prone to error and subject to noise as it will be shown in Section 3.5 and

Chapter 4.

Second, if the equation contains the multiplication factor κ, then the visual system

can estimate the shape parameter only up to this factor. There are three ways the

visual system makes an estimated of this parameter: either by making an assumption

about what the value is, by computing the value of the parameter using non-local

information, or by estimating the parameter from information available in other cues.
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Whereas the first possibility is the one classically embraced by constructivist theories

of perception (Rock, 1984), the second possibility (non local computation) has re-

ceived support from my own investigation (Di Luca et al., 2004; Di Luca, Domini, &

Caudek, submitted) and the third possibility corresponds to the concept of promotion

discussed in the Section 3.1.

Third, the more the equation approximates a linear function, the more accurate

the perception of the property will be. In fact, if the equation is non linear with respect

to the image measurement, the estimate will contain a statistical bias that is a function

of the amount of noise in the measurement (see Daniilidis & Spetsakis, 1996). In fact,

if the shape property p is related to the image measurement i by a linear function

p = ki, the influence of noise in the measurement can be represented by the formula

i = m+δm where the random variable δm has mean E(δm) = 0 and variability V (δm).

This variable has an influence on the variability of the estimate V (p) = kV (δm)

without affecting the expected value E(p) = km + kE(δm) = km. However, if the

mapping is not linear, i.e. it is quadratic as in p = ki2, the same noise term modifies

the variability V (p) = 2kmV (δm)+kV (δm)2 but also the expected value by an amount

that depends on the variability of the random variable E(p) = km2 + kV (δm)2.

Fourth, higher order derivatives of a signal are more affected by noise than lower

order ones. The estimate of properties based on lower order image signals would be

more precise than the one based on higher order estimates.

The idea that all the information provided by the cue is expressed in terms of
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depth and that cues are equivalent is classically incorporated in many approaches of

3D shape perception and computer vision more or less explicitly. From the analysis of

cues provided in this Chapter and summarized in Table 2.1 it is clear that cues do not

provide interchangeable information about the shape of surface. Each cue provides

information that is qualitatively different, so the classic assumption of equivalent

estimation of depth is fundamentally flawed. Motion has lower level of noise in the

estimate of depth than in the estimates of slant and curvature. Texture specifies slant

and curvature when slant is known (therefore wit less accuracy), depth can only be

obtained by integration. Shading specifies curvature, and other properties must be

obtained by integration. The informativeness of each cue in a particular situation

must be addressed before further analysis can be made.

The different information does not depend completely on the image formation

process. The image signals are not informative only about the shape property that

they are related too. Even if a signal can be described in terms of the shape property

that generates it, it is not necessarily true that this mapping can be reversed. For

example, even if shading information is created by the orientation of the surface

at each point, we demonstrated that curvature is the shape property that can be

recovered more easily, not slant.

Only an analysis like the one provided in this chapter allows to specify what are

the relations between cues and properties. In the investigation of shape perception

this analysis has been frequently overlooked or underestimated. In the next chapter
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it will be shown how this analysis can help in the understanding of the combination

of cues by the visual system.



Chapter 3

Cue Combination

53
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“I had made the mistake of thinking that the experience of the layout of

the environment could be compounded of all the optical slants of each

piece of surface. . . Convexities and concavities are not made up of elemen-

tary impressions of slant but are instead unitary features of the layout”

(Gibson, 1979, p166)

From the pioneering work of Marr (1982) most research has considered cues as

separate sources of information that are processed separately in the visual system (see

Landy, Maloney, Johnston, & Young, 1995). It is assumed that different modules

compute depth independently from each cue and the result of the computation is

a depth map of the surface at each point of the image. Once the depth map is

computed for one cue it is merged with the ones obtained from different cues to

obtain a common final estimate. The process of joining information obtained from

different cues is called cue combination.

There are many ways to combine information. Clark and Yuille (1990) defined a

general dichotomy to classify the different possibility. Weakly coupled cue combina-

tion is where the estimate of one module does not affect the computation, nor the

output, of any other module. Each module must be able to provide a unique veridical

solution from the cue to which it is devoted. The purpose of cue combination is to

reduce the noise in the final estimate by averaging the redundant estimates of the

depth map. Each estimate is weighted depending on the relative reliability of the cue.

“Strongly coupled” cue combination means that the results of the computation
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of one module interacts with other modules, usually by altering the influence of con-

straints or assumptions necessary for the computation of the estimate. The outputs

of the modules are interdependent, because the computation that a one module per-

forms based on one cue can be affected by the result of others. Strong coupling not

only reduces the noise in the estimate can be computed even in the case that infor-

mation is underconstrained. In this case the assumptions needed for the computation

are derived from the interaction of the modules.

This framework has been extended to visual perception. The two categories, weak

and strong, define a continuum on which each proposed approach falls. At one end

the models emphasize modularity, the estimates are recovered independently and

the estimates are linearly combined. These models are called ”weak fusion” (Clark &

Yuille, 1990), ”weak observer” (Landy et al., 1995) or ”additive models of perception”

(Massaro & Cohen, 1993). Every module is dedicated to the analysis of only one cue

and produces an estimate that can be compared to the others (Maloney & Landy,

1989). That is each module computes an estimate of the same property. The rule

of combination used is linear, like an algebraic sum (Maloney & Landy, 1989) or an

average (Taylor, 1962). The weights given to each estimate change relatively slowly,

and depend on the relative reliability of the cues (Jacobs & Fine, 1999; Backus &

Banks, 1999; Ernst & Banks, 2002; J. M. Hillis, Banks, & Landy, 2002).

At the other end of the continuum is the ”strong observer”, where the computation

is not divided in separate modules. Cues can influence each other’s interpretation and
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the emphases of the model is posed on the holistic processing of information rather

than on its separability. The rule of combination is completely unrestricted; estimates

are not divided corresponding to different cues. Such an approach is consistent with

the model proposed by (Nakayama & Shimojo, 1992) where the observer simply

chooses a scene interpretation that maximizes the probability of the image.

Landy et al. (1995) emphasized that the weak and the strong observer are only

theoretical formulations that represent the two extremes of a continuum. Real mod-

els occupy a position that is determined by the amount of freedom in the interaction

between the modules, e.g. the quantitative influence a module has in changing qualita-

tively the output of other modules. The most accepted model of cue combination, the

modified weak fusion (MWF) model proposed by Landy et al. (1995), lies somewhere

in the middle because the structure is modular, but there are limited interactions

between cues.

Domini, Caudek, and Tassinari (2006) recently proposed a different approach

called the Intrinsic Constraint (IC) Model because it stresses the importance of con-

straints between image signals for the estimate of shape. The fundamental observa-

tion of the approach is that image measurement are interdependent, and therefore the

computation is not actually separated in modules devoted to a cue, but the solution

is computed inter-independently.

We will cover the relevant detail of these approaches before considering other

problem of cue combination. More importance in the analysis will be given to the
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issues related to the topic of this dissertation, rather than to give an exhaustive

description of the theories.

3.1 Modified Weak Fusion

Landy et al. (1995) proposed a different model of cue combination based on a lin-

ear combination rule, but with many difference from strictly weakly coupled fusion

approaches (see also Kersten & Yuille, 2003; Young, Landy, & Maloney, 1993). The

model they proposed received great empirical support and now it is considered to be

the most comprehensive model of cue combination.

The authors believed that the modularity of the system is very important and

that the final linear interaction among estimates is essentially correct. They wanted,

however, to place the accent on the different kinds of information provided by various

cues and how one can consider such differences while integrating the estimates from

different modules. The authors (see also Maloney & Landy, 1989; Jacobs, 2002)

state that cues in the retinal image are differently ”meaningful” (see S. S. Stevens,

1959). Each source provides information measured in a particular scale type that

is qualitatively different from other types. The integration process has to somehow

account for these differences.

In order to account for the different type of information that the cues provide, the

authors proposed that the visual system makes each estimate to be “commensurable”

with the others by transforming it to a common scale (scale convergence Birnbaum,
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1983). Cutting and Vishton (1995), in an early account of this problem, assumed that

all sources were reduced to a lower-order description, namely to an ordinal represen-

tation of the world (see also Cutting & Bruno, 1988). However, Landy et al. (1995)

stated that instead of reducing the solution, the visual system “promotes” the status

of the cues by making them all sources of absolute depth information once a number

of unknown parameters have been specified Maloney and Landy (1989). The output

of the module could, therefore, be thought of as a “depth-map-with-parameters” 1.

Promotion is a type of interaction between cues where each module provides the

others with its current incomplete depth map. The information coming from other

modules is used to compute the missing parameters needed for the interpretation.

Each module could, therefore, fill in the missing parameters using incomplete output

from the other modules. Using the promotion mechanism, two cues that are present

in the same location of the retinal image can be made commensurable if the one with

lower status is promoted to the value of the higher one. The two cues can interact in

different manners (for an exhaustive description see Landy & Brenner, 2001):

• First, an absolute cue can provide the missing parameter for a lower order cue

that must be promoted if they are both present in some areas. For example,

stereo information which provide absolute surface distances, can be used to

promote occlusion to a higher order.

• A second possibility for promotion is when cues have different scaling behavior.

1as advanced by Shopenhaurer (1847) and present in Gogel’s formulation as well (Gogel & Tietz,
1977).
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Cues of this type provide a metric description only once the viewing distance has

been determined. The visual system has to use information from a qualitatively

different cue to define the missing parameters (E. B. Johnston, Cumming, &

Landy, 1994) usually it does so by deriving the viewing distance, or the motion

of the object. Richards (1985), for example, developed a method to obtain

the correct viewing distance parameter from motion and stereo by equating the

shape specified by the two cues. Since the cues scale differently with distance

(depth from motion scales linearly whereas disparity scales quadratically) the

correct viewing distance is the one and only value at which the estimates of the

modules are in agreement.

• A third possibility is if two sets of scene estimates are combined to mutually

constrain the assumptions needed for their interpretation. A possible example

is the interaction in the interpretation of shading and texture. While shading

provides curvature estimates once the light source parameters have been indi-

viduated, texture needs constraints on the distribution and composition of the

texels on the surface. The two cues could solve the problem of interpretation

by combining the information they provide.

• A fourth and final possibility is when a cue promotes itself if two sets of data

are gathered. For example the interpretation can be mutually constrained from

different parts of the scene or from multiple views of the same object.

All these instances of promotion are examples of the same computation: the
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determination of the scaling parameter for the interpretation of depth. Once this

missing value is specified the cues can be combined using simple rule of combination.

It is important to spell out that for the MWF the information sharing can be used

only for purposes of promotion, so to determine the depth scaling. The output of

each module once these parameters have been obtained is a depth-map and a map

of estimated reliability. These two maps for each of the cues are feeded to the actual

combinatory stage.

Many results are consistent with the modified weak fusion scheme. Non-linear

interactions between cues as the ones incorporated in this scheme have often been

reported.

There are results consistent with the presence of a hierarchy of cues and a selec-

tion of the best suited for interpreting the observed scene. Schwartz and Sperling

(1983)found that linear perspective does not provide useful information for such dis-

ambiguation when coupled with proximity-luminance covariance (PLC) which in turn

is found to override geometric cues of form and motion. Prazdny (1986) suggested that

kinetic information vetoes stereoscopic disparity information. He showed subjects a

sequence in which the motion was consistent with a rotating three-dimensional shape

but the disparity information was consistent with a flat disk in front of a background.

Many results are consistent with the view that one cue disambiguates the depth

derived by another. Braunstein, Anderson, and Riefer (1982), for example, found that

occlusion information in a motion sequence disambiguates the sign of depth derived
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from kinetic information. Proffitt, Bertenthal, and Roberts (1984) obtained a similar

result investigating multistability in point-light walkers stimuli, indicating that oc-

clusion reduces it. Braunstein, Andersen, Rouse, and Tittle (1986) found that stereo

disparity disambiguates the sign of perceived depth from motion information. B. J.

Rogers and Collett (1989)reported a similar finding for stimuli containing motion

parallax and stereo disparity by asking the subjects to estimate depth of corrugated

surfaces. They evaluated the combination rule using a matching technique with differ-

ent magnitudes of the two cues and found that observers minimize the discrepancies

between depth signaled by stereo disparity and parallax transformation by reducing

the amount of rotation required by the interpretation of the scene. This result is in-

consistent with a linear combination strategy but is plausible under promotion. Blake

and Bülthoff (1990)showed that the disparity information provided by the presence

of a highlight on a shiny curved surface can disambiguate the sign of perceived depth

from shading information across the surface.

Another point that this model does, is the definition of cues to flatness. Bülthoff

(1991) used a shape matching task with texture and shading information. He found

that their combination could be modeled by a ”strong coupling” citeB1991because

perceived depth increases with the availability of more cues. Landy et al. (1995)re-

vises this interpretation by saying that the absence of a cue is not the same as the

presence of a cue that indicates a flat object. Many other cues could be present

signaling a flat display, so by increasing the number of cues available, the cues to
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flatness receive less weight and the apparent additivity is predictable.

A different set of findings is consistent with the presence of a promotion mechanism

for cues that have a reliability that depends on distance (distance scaling). E. B.

Johnston et al. (1994) suggested that motion and stereoscopic disparity interact to

improve judged distance and solve the scaling problem when subjects were asked to

choose which of a set of cylinders appeared circular (apparently circular cylinder). The

results indicate that perceived shape was determined by both motion and disparity,

whereas distance and size where affected only by the disparity cue. Tittle, Todd,

Perotti, and Norman (1995) found that binocular disparities and motion didn’t always

result in veridical estimation of shape. The results with the cylindrical task indicate

that the shape of an object is dependent on both its orientation and viewing distance.

The authors interpret this result as providing support for the idea that the perceptual

solution is achieved through an Affine representation.

Brenner and Damme (1999)used an adjustment task for the size and depth of

an ellipsoid (which had to be matched to a tennis ball) and a reaching task for its

perceived distance. The inclusion of rotation information for the stimulus improves

perceived shape, but did not influence the apparent distance or its size. On the other

hand, enhancing distance cues improves the three judgments altogether. The results

indicate that the three tasks could depend on different representations or on different

weighting of the cues. The authors concluded that with the rotation the improvement

to the measure of distance in the shape module does not transfer to other judgments.
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The MWF model of cue combination is a way of overcoming the limitation of a lin-

ear combination strategy wile preserving its inherent simplicity. Interactions between

cues are allowed, but fundamentally limited to promotion. This approach acknowl-

edges that cues do not carry information about Euclidean depth. The information

that cues carry can be promoted to depth by specifying some missing parameters.

All the combinations between cues happen in a 2 depth map.

3.2 Intrinsic Constraint between Image Signals

The weak observer does not make use of any knowledge about the image formation

in the combination of cues. Domini et al. (2006) proposed an alternative hypothesis

that constraints implicit in the image signals, are used in the interpretation of cues.

The various image signals are not processed independently, but they are combined

at the signal level before a 3D interpretation is provided. Their proposal states that

the magnitude of the different image signals is first scaled by the amount of noise

present in the measurement. This assures a common metric between signals. In this

way different signals can be represented along orthogonal axes in a multidimensional

space, called the “signal space”. The visual system reduces the dimensionality of the

signal space to a one-dimensional manifold in a manner comparable to a statistical

methods for dimensionality reduction. The authors proposed the use of Principal

Component Analysis as a possible method of reducing the dimensionality of the image

2unique representation of
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signals. This has the relevant advantage of obtaining a new signal that has a higher

correlation with the depth than each of the signals in isolation. It is, in other words,

the best estimate of the Affine structure of the distal object.

This model allows a more accurate analysis of the problem of cue combination.

In the MWF approach, all the image signals are assumed to be related to the relative

depth of the points in the optic array. Instead, the IC Model stresses the importance

of a correlation between image signals in the image formation process.

Let us consider, as an example, the case of a monocularly viewed textured patch

curved in depth along the horizontal dimension and illuminated by a light source. The

optic array contains two types of information, the texture gradient and the shading

pattern. If the object is big enough and there is a perspective effect, only one of

the two cues would carry information about depth, namely the size of the texels

(as stated in the analysis in Chapter 2). But let’s also assume that the object is

small enough that this information is not present in the image. Then none of the

two cues carry information about depth unless some other knowledge is available

to the viewer. Recall from the last chapter that the by measuring arccos(m/M) it

is possible to obtain an estimate of slant from texture and by measuring κIs it is

possible to estimate curvature from shading. For the MWF the visual system should

promote the two cues to depth maps in order to combine them. None of the cues

can be expressed as a depth map without other information. The only possibility

to create a depth map is to estimate the slant at every point across the surface and
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then reconstruct depth from these values. For shading the estimate of slant is also

not available from the image signals. For both cues these processes are noisy and

therefore not very reliable. Indeed in this framework, shading is considered to be not

very informative.

The ICM says that the image signals of shading and texture are related, but the

relation is not in terms of depth as the MWF assumes. For example, if two adjacent

points in the image have known values m/M (see Section 2.2), then it is possible to

predict what the value of Is should be (Section 2.3). In fact, the different properties

of shape that generate these signals are related because the orientation and curvature

of a patch geometrically determines the slant of adjacent patches.

This example illustrates how image signals are mutually constrained even if they

are not indicative of the same property. Similarly to what the MWF hypothesizes,

cues do not specify shape until some parameters have been solved for. These param-

eters are necessary for estimating shape properties and not for promotion of cues as

in the MWF.

These parameters might be assumed or estimated by a global process. The

Bayesian approach to perception has a similar distinction, priors (assumptions) are

discarded if sufficient evidence (estimate) is present in the image. In a recent analysis

of structure from motion I showed (Di Luca et al., 2004) that isolated patches are

perceived with a slant and angular velocity that is dependent on deformation accord-

ing to the default value ω∗ = σ∗ = k
√

def (Domini & Caudek, 1999). Estimates of
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both slant and rotation are made from the same image signal and they cannot be

disentangled. When the patch is embedded in a larger optic flow, a process of spatial

integration between different areas in the retinal image changes the interpretation, so

that the whole surface is perceived as moving rigidly (and therefore with the same an-

gular rotation ω. In this case, a global process can be used to estimate the necessary

parameters and disentangle slant and rotation.

3.3 The representation problem

“The eye sees only what the mind is prepared to comprehend” Henri

Bergson

One of the most common views of perception is that the visual system uses the

information available in the retinal image to reconstruct the Euclidean shape of the

environment. It has often been assumed that this shape is expressed in the form of

a feature map (Barrow & Tenenbaum, 1978). This idea was first proposed by Craik

(1943) and Gibson (1950) stating that knowledge about the 3D shape of objects can be

described as a point-by-point mapping of depth and orientation for each surface within

the field of view see also Gibson (1979). Feature maps are retinotopic3 and contain

measurements of a local property computed from the retinal signals (Gibson, 1979;

Barrow & Tenenbaum, 1978; Todd, 2004). In these maps some type of information

has to be made explicit (Marr, 1982, p10).

3each point in the optic array is associated with an estimated (i.e. Landy et al., 1995)
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Figure 3.1: Representation of different feature maps for the same object.

Many models of perception assume the use of a feature map, although its existence

is still challenged. Moreover, even if this map exists, there is still debate about which

feature it is based on. It is also assumed that once one feature has been computed

from the image signals it should be easy to derive other features.

According to differential geometry, feature maps based on Euclidean properties

are formally equivalent. The only difference between possible maps is the property

explicitly represented. If depth is used as the represented property in a feature map,
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it is trivial to compute the values of orientation and curvature by taking the deriva-

tive along the depth dimension. Depending on the order of the spatial derivative

taken along the depth dimension (see Koenderink et al., 1992) these maps take differ-

ent names: Depth-map, Slant-map, Curvature-map. Depth-maps associate relative

depth, the 0th order structure, to each point on the object projection. Orientation-

maps associate local orientation, the 1st order structure, to each point on the object

projection. Curvature-maps associate curvature magnitude, the 2nd order structure,

to each point on the object projection.

Many of the early accounts of vision were based on depth-maps, probably because

they are descendants of computer vision approaches where the representation of depth

is undoubtedly the easiest property to use (Barrow & Tenenbaum, 1978). There are

more recent studies that favor the use of shape descriptors such as surface orientation

(”2-half D sketch” Marr, 1980; Reichel, Todd, & Yilmaz, 1995; Koenderink et al.,

1996), invariant landmarks (Phillips, Todd, Koenderink, & Kappers, 2003), or direc-

tional curvature (Cutting & Millard, 1984; A. Johnston & Passmore, 1994b; Curran

& Johnston, 1994; Bülthoff & Mallot, 1988).

Several studies have shown that the equivalence between Euclidean representation

may not be relevant to the functioning of the visual system (Koenderink et al., 1996;

Todd & Bressan, 1990; Tittle et al., 1995; Fermuller, Cheong, & Aloimonos, 1997;

Domini & Braunstein, 1998) While physical space is Euclidean, perceived space could

be expressed in a different geometry (for a discussion see Cutting, 1986; Todd &
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Norman, 2003), where geometry is a system of definitions and theorems - called

invariants - which do not change under a specified group of transformations (Cutting,

1986, p65).

Visual space could be, for example hyperbolic but the amount of curvature is

so small that it goes unnoticed in most circumstances (see i.e. Helmholtz, 1910).

According to Todd and Bressan (1990)perceived space is Affine, where angles and

lengths in different directions are not preserved. The Affine account of perceived

space has received much empirical support, but there is also some evidence that it

does not entirely describe visual perception (e.g. Domini & Braunstein, 1998). One

of the findings indicating that perception is not based on Euclidean properties is

inconsistency of results obtained with different judgments of shape properties. Koen-

derink et al. (1996)were among the first to notice the confusion between geometry

and perception. Participants compared relative depth and estimated slant on a man-

nequin torso. Subsequently, the authors compared the reconstructed shapes derived

from the two judgments. If the two judgments were equivalent, then the two shapes

should have been identical. While the reconstruction did show inherent topological

similarities a significant difference in global orientation was evident, a “change of

pose [. . . ] – a torsion in the waist that twists the thorax” of the mannequin used as

a stimulus (Koenderink et al., 1996, p170). The reconstruction was so different that

the authors concluded that perceived orientation is not based on a depth map. Using

synthetic shading information A. Johnston and Passmore (1994a) obtained similar
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results. The measured sensitivity for curvature and orientation indicates that they

are directly estimated from the retinal information rather than being derived from

each other.

This empirical evidence indicates that geometrical and perceived shape are fun-

damentally different and that perceptual space has non-Euclidean characteristics. As

a consequence, feature maps characterized by different properties are not equivalent.

Tasks based on the represented feature become easier but tasks based on other fea-

tures are then more difficult. Thus, the choice of a feature on which the map is based

has profound consequences for the perception of the environment. The selection is

limited because while some features are easy to derive from the image signals, others

can not be directly derived. It would then seem logical to base the map on easily

extracted features. To appreciate this point, let’s consider the work of Lappin and

Craft (2000). The authors stressed the importance of shape index (Koenderink, 1990,

p319-324) as a representational unit because of its relation with retinal signals. There

are a range of retinal signals that allow us to make a precise discrimination of the

local shape of a surface without any further processing or assumption. Conversely,

no similar retinal information exists for other descriptors. As we discussed in chapter

2 there is no single one-to-one mapping between image signal and curvedness (Tittle,

Norman, Perotti, & Phillips, 1998). Yet our perception of the environment is not

limited to shape index, we can also perceive curvedness.

Let’s summarize what has been said so far to understand why this is possible.
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If perceived space is Euclidean, feature maps are interchangeable because they are

mathematically equivalent. If perceived space is non-Euclidean, feature maps are

not equivalent and the choice of a one will affect perception. Either the perceived

properties of shape are all derived from the same ’primary’ description, or there exist

multiple descriptions of the same object derived from the retinal signals. With a

primary description, all perceived properties are consistent, but the estimate is more

precise for the ’primary’ property. If there are multiple descriptions, the perceived

properties do not need to be consistent.

We will now look into this latter possibility, that there exist multiple descriptions

of the same object based on only one geometric property of the three-dimensional

shape (Tittle, Perotti, & Norman, 1997). K. A. Stevens (1995) was one of the first

proponents of this theory and called these descriptions “representations”. His theory

defined a task as a matter of dimensionality reduction of parallel representations.

In this view, since perceived space is non-Euclidean, the representations can coexist

while being mutually inconsistent (see Koenderink et al., 1996; Mausfeld, 2003). “It

is not strictly necessary for any global ‘internal representation’ to exist in the first

place, and if there is one such entity there seems to be no reason why there couldn’t

be several, perhaps unrelated ones” (Koenderink et al., 1996, p169). The existence

of different representations might be due to the very nature of cues. Cues are in fact

generated by some aspect of the environment and while they carry useful information

about some of these properties, they do not specify completely every aspect of the
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environment.

The representation of space is still an open question and needs to be addressed to

fully understand cue combination. The representation then serves as a medium for

solving conflicting cues (e.g. Attneave, 1972). Thanks to the explicit representation of

one characteristic of the world, cues that specify that characteristic can be combined

directly. Cues that offer information about a property of the world are more likely to

be represented in an explicit manner for that property. Interaction among competitive

information can be achieved in this format without re-mapping (which in turn would

decrease the accuracy of the solution). Direct mapping of cues into representation

has some shortcomings because the combination depends on the task the organism

has to solve (see i.e. Schrater & Kersten, 2000). We will explore this point in the

next section.

There is not a clear answer to the problem of representation that we have explored

in this section. The debate is particularly open on three points: the geometry of

perceived space, the features explicitly represented in it, and the presence of multiple

representations (or the problem of independence of perception and response K. A.

Stevens, 1995).

3.4 The influence of the task in cue combination

In the classical formulation, the goal of the visual system is to create a full 3D rep-

resentation of the scene with Euclidean properties that can be accessed to generate
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a large number of behaviors. This same type of representation was adopted by re-

searchers in machine vision; B. K. P. Horn (1975, 1977), for example, defined shape as

a local orientation map (see also Pentland, 1984; K. A. Stevens, 1995). A similar ap-

proach was adopted by Marr (1982) and Marr and Nishihara (1978). There are many

findings indicating that the visual system may generate an internal representation of

space whose geometry is reflected in the performance on different tasks (for exam-

ple J. Foley, 1977; Loomis, Da Silva, Fujita, & Fukusima, 1992; Philbeck & Loomis,

1997; Brenner & Damme, 1999). This implies that the different tasks require different

computations but it is unclear how to select the computation given a task (Todd &

Bressan, 1990; Tittle et al., 1995). Langer and Bülthoff (1994) summarize different

types of cues underscoring their importance in shape perception. The opposite view,

that a common internal representation is not used at all and different tasks are solved

in different ways by the visual system, has also been confirmed by different findings

(Bradshaw, Parton, & Glennerster, 2000; Knill, 2005).

Rogers showed that different task demands involving the manipulation of the

same information leads to inconsistent results (B. Rogers & Bradshaw, 1993). When

subjects were asked to adjust the pattern of disparity until it appeared to be fronto-

parallel, the results at different distances of observation indicate complete consistency.

When the same experimental setting was used to ask the subject to judge the ampli-

tude of a corrugation, the constancy for this task was small (Bradshaw, Glennerster,
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& Rogers, 1996). Because a unique representation of the scene cannot lead to a differ-

ence in performance for the tasks, the data suggest a direct strategy. The adjustment

task can be solved without an estimate of the viewing distance, however the judgment

itself requires such a evaluation (see Bradshaw et al., 2000). The visual system may

use the simplest possible strategy to solve any task with which is faced. (Glennerster,

Rogers, & Bradshaw, 1996) proposes a hierarchy of mechanisms to perform tasks that

require increasingly precise information, where the visual system would choose the

lowest order one.

Bülthoff and Mallot (1990) showed how the data collected using a depth probe

lead to a reconstructed shape with significant errors. The errors were reduced when

the task was changed to a global depth comparison between shapes. The authors

analyzed different pairs of cues using the two types of judgments and in summarizing

their results they propose that the integration of cues leads to the perception of

different descriptors of shape (range, shape, orientation). They state that the global

orientation of an object can be recovered more easily from texture cues (Bülthoff &

Mallot, 1988)while the curvature (shape) is easier with shading. Highlights have an

effect only on the reported shape and not on measures made with the depth probe.

The authors proposed a strong fusion scheme for the integration of the modules.

Dennett (1991) described the difference in task performance while experimenting

with inverting goggles (Stratton, 1897). After adaptation to the inversion, some

aspects of the world appeared to be normal, while others did not adjust and so were
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inconsistent. A single representation of space could not lead to this inconsistency.

The best way to account for the difference in performance across tasks is to assume

that the visual system uses different mechanisms in each case.

Another situation where performance on tasks is inconsistent arises for reaching

responses, which only seem accurate in the presence of binocular information (Pagano

& Bingham, 1998; Bingham & Pagano, 1998). In this case the task performance

depends on the type of information provided. This also indicates that the visual

system can obtain a veridical estimate of a property of the world if and only if it

has the appropriate information for the evaluation. However, Milner and Goodale

(1995) suggest a different interpretation: two separate visual pathways could lead to

different solutions for purposes of perception and action. There are other findings that

support this view. For example, the same visual stimulus produces accurate walking

responses (Loomis et al., 1992)as opposed to inaccurate verbal judgments (Pagano &

Bingham, 1998) and matching (J. F. Norman, Todd, Perotti, & Tittle, 1996). In this

case, depth perception probed by different tasks (for a review see Landy et al., 1995,

p402-404) produces different response patterns (Koenderink et al., 1996) indicating

that many representations are used and they don’t need to be consistent (Graziano,

Yap, & Gross, 1994).

The results discussed in this section indicate that the analysis of a cue is mapped

onto the representation that is more appropriate given the type of information that

the cue carries. Other computational processes allow the conversion of one type of
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information in other ones. In the next section I will describe how this way of analyzing

information can be applied to the cue combination problem.

3.5 Theoretic proposal

As described in Chapter 2, shape properties can be estimated directly from a local

measurement of the image signals or they can be obtained indirectly by integrating

many measurements across the image.

The computation of an estimate from image signals is possible only if the image

signal carries information about the shape property, so that the magnitude of the

signal and the magnitude of the property covary. Similar to the concept of cue

validity proposed by Brunswik (1956), here the cue is lawfully connected to the shape

properties. If such an image signal is present, the estimate can be obtained by a

“local analysis” of image signals.

A local analysis is composed of a measurement made in a small region of the retinal

image, and a computation on this measurement. The estimate of a local analysis is a

single value associated with the area of the image. The measurement of image signals

and the computation of an estimate are contained in a “spatial operator” a module

that encapsulates the information in spatial terms (i.e. see Koenderink et al., 1992).

The estimate at one point is independent from other estimates and from the image

signals in neighboring regions. The processing of the image as a whole happens in

parallel between these encapsulated modules. If there is no image signal that relates
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to the shape property, the visual system has to first measure some other image signal

that is locally unrelated to the property, but that integrated across the image allows

the computation of the property.

As described in Chapter 2, the estimate of the shape property is limited in preci-

sion by two factors: noise in the measurement, and noise in the computation. When

the estimate is not computed from local information, the amount of noise in the

computation is higher than in the local case. In fact, more than one measurement is

needed for the estimate, each of which is affected by noise. These measurements are

subsequently combined so that the noise term has an addictive effect. This happens

because the variance of the sum of any number of mutually independent random

variables is the sum of the individual variances. The expected value is instead the

average of the expected values of the individual random variables.

To simply show this point, let X1, X2, ...Xn be an independent-trials process with

expected value E(Xj) = µ and variance V (Xj) = σ2 = E((Xj − µ)2). Let the

sum of these random variable be Sn = ΣXi, and their average be An = Sn

n
. The

expected values of these quantities are E(Sn) = nµ and E(An) = µ. The variances

of these quantities are V (Sn) = nσ2 and V (An) = σ2

n
. The average of independent

random variable has a lower variability than the single variables in isolation. However,

the variability of the sum of the same variables has more variability than the single

variables.

The estimate of a surface property with non-local analysis is affected by additive
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noise, so it is less reliable than local ones. The goal of perception is to obtain a

precise estimate of the shape properties, so local analysis should be preferred over

non-local ones. However, the non-local estimates should not be discarded completely.

In order to decrease the uncertainty in the final estimate, the visual system combines

the estimates from multiple sources of information when available simultaneously. In

this way it takes advantage of the reduction of variability in the average of random

variables described above.

According to the MWF the visual system relies more on cues that provide a precise

estimate (Yuille & Bülthoff, 1994; Landy et al., 1995; Clark & Yuille, 1990). Most

of the studies that adopted this view concluded that the visual system estimates the

precision of the cue by measuring the variability of the estimate in different trials.

But here there is an interesting conundrum, as we showed in Chapter 2 the reliability

of the cues depends on the property to estimate. Thus the weight assigned to each

cue should depend on the property judged in these trials.

Consider the situation where two image signals A and B provide local information

about a shape property X with similar reliability. In this case, the visual system

combines the estimates from the two signals weighting them equally. Now assume

that only the image signals A provides information about a second property Y, while

the other signal B is not related to this property. The estimate of this property Y

will be more precise if based more on the image signal A rather than on B. Therefore,

in the same viewing situation the weight given to a cue depends on the property
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judged. For example, we have seen that whereas texture cues are informative about

orientation and somewhat about curvature, shading is limited to curvature. In this

case, tasks in which performance is based on curvature estimates are more precise if

based on both the cues. Tasks depending on orientation will be more accurate if based

mostly texture, which provides information about this property and therefore is more

precise. The variability on the estimate of orientation from shading information, on

the other hand, will be higher and the visual system should not rely heavily on it.

The variability of the combined estimate should be therefore weighted differently in

the two cases in order to be optimally reduced.

The expected value of the estimate in these cases follows a similar destiny. There

are many indications that cues do not provide information to make a veridical (unbi-

ased) estimate of the shape properties. The result is that the value of the combined

estimate will be closer to the more reliable cue for that particular property.

Without considering the relationship between cues and properties and without the

presence of multiple representations of the object, a weighted average based on depth

information as proposed by the MWF is not an appropriate strategy for integrating

cues. In the next chapter I will show numerically that the estimates of shape prop-

erties are related to the type of information available to the viewer and that optimal

combination of information is influenced by the property considered. The difference

in the estimates of the geometric properties indicates that the visual system does not

recover the Euclidean structure of the environment. Instead we conclude that there
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must be multiple representations of shape properties.



Chapter 4

Simulation

81



82

In the previous chapters, I described the information provided by each cue as well

as my hypothesis about how the visual system might use the image signals to estimate

the shape properties. To prove that in some cases the measurement of an image signal

provides sufficient information to make a local estimate of a certain surface property

and that the noise involved affects the estimate I ran a simulation of an ideal observer

that uses the simple equations of table 2.1 to estimate geometric properties. These

equations are based either on local computations or on integrals and derivatives of

these signals. I did not consider any global nor symbolic processing of information.

The relationship between properties and information is extremely important in

shape perception, and its analysis allows us to predict how the information provided

by each cue is related to the perceptual estimate of different shape properties. This

theoretical analysis does not consider the effects of noise in a quantitative manner.

The noise in the measurement is different for each pair of signals and properties

depending on the type of computation involved and the viewing situation.

An informative method to evaluate the effect of noise in a particular situation

is to create a simulation and compute the estimates of each property by using the

same conditions and strategies as the visual system. The goal of this simulation is

to quantitatively verify that in viewing situations similar to the experiments, the

performance of an optimal observer can be explained by the local specification of

properties by the image signals. It is important to make the image signals available

to the ideal observer as similar as possible to what was used in the experimental
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Motion Texture Shading
Depth L+I+II I+II II
Slant L+D+I L+I I

Curvature L+D+DD L+D L

Table 4.1: The computation of shape properties can be made in different ways: (L)
locally by considering only the image signal, (D) by derivation from lower order
properties or (I) by integration of higher order ones.

condition and estimate the same properties as the subject are required to report. 1

This simulation is comprised of ‘information’ and a ‘computation’ stages. The

information stage is designed to create the same type of information available in

the single-cue experimental viewing conditions (described in Chapter 5). Three cues

are been considered here: motion, texture and shading. The computation stage

simulates the computations of the ideal observer: measurement of the image signals

and computation of the shape properties.

The ‘information’ stage involves the creation of a surface viewed at a distance

of zf = 2000mm with size r = 50mm and stretch factor S = 0.05 that defines the

shape z = Sx2, similarly to the experimental conditions described in Chapter 5. The

three types of cues used by the participants were simulated as described below. The

image signals contain noise similar to the one a human observer would encounter in

the same viewing condition. The simulation consisted of 50 repetitions of the same

estimate using the same information perturbed by different samplings of the noise.

In the ’computation’ stage, the ideal observer uses the information in the display

to estimate the shape of the surface in terms of three properties: relative depth,

1In Chapter 5 the simulation will replicate the experimental conditions.
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orientation and curvature for each point in the image. The estimates of the properties

can be computed in three different ways:

• By measuring the image signal that provides local information

• By deriving a higher-order property from the estimate of a lower-order one made

locally

• By numerical integration of higher-level properties along a straight line starting

from the center of the surface.

Each of the cues has different combination of the three ways of computing properties.

Table 4.1 summarizes how in the simulation each of the properties has been computed.

Each of the table’s entries is one possible way of estimating a shape property and will

be considered in the following simulation. The different estimates will be kept separate

and analyzed for magnitude and variability.

4.1 Motion simulation

A series of identifiable features was simulated to be on the surface, aligned with the

y axis. As in the experiments, the features were points but here they were equally

spaced in the vertical direction, 5mm from each other on the image plane. The surface

was simulated as rotating around a vertical axis passing through the middle of the

surface with a period of 1sec and an oscillation amplitude that changed according

to the equalization procedure described in Section 5.2. The value of velocity for
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Figure 4.1: Image signals related to the motion cue (with and without noise). Top:
Velocity of the surface features on the image. Middle: First derivative of the velocity.
Bottom: Second derivative of the velocity.

each feature i was simulated as such: v = (zi − z0) ∗ sin(ω) where ω is the angle of

rotation. After some experimentation, the angle of rotation was chosen to be ω = 20.

The simulated observer made use of three image measurements: velocity v measured

on each point, velocity gradient ∇v and second order velocity gradient ∇2v. The

simulated noise affected each signal in the same manner. For the velocity, the error in

the estimation had a standard deviation = 60arcsec/sec. For the other two signals,

the standard deviation was calculated accordingly.

The simulated observer estimated the three properties both directly and indirectly

for each point of the stimulus. Indirect properties were obtained by differentiation

or integration of the direct ones. From the velocity signals, it is possible to estimate
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Figure 4.2: The rendering algorithm used in the experiments has been here utilized
to depict how the surface would look with the texture.

depth directly, since speed correlates with depth, and then to calculate the first and

second order gradients to obtain slant and curvature. For the direct estimation of

slant it is possible to use the velocity gradient and then calculate the gradient to

obtain curvature and the integral to calculate depth. The estimation of curvature is

extracted from the second order gradient of velocity and then the two integrals are

computed to obtain the estimate of slant and depth.

4.2 Texture simulation

A series of features was simulated on the surface with a spacing of 10mm in the image

plane. The features can be thought as circular texture elements with ray r = 5mm

that are projected on the image plane in orthographic projection. This is slightly
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Figure 4.3: Image signals related to the texture cue with and without noise. Top:
Length of the projection of the two axis. Middle: Ratio of the two axis. Bottom:
Derivative of the ratio.

different from the type of stimuli used in the experiment where a volumetric texturing

method was used and the features were positioned randomly across the surface. In

this case, the texture information is generated only from the size of the major axes

of the ellipses generated by the projection of the circles. This method was employed

because of the simpler way it can be simulated.

The simulated observer measures the elongation of the axis A and B for each of the

features. The minor axis A′ is foreshortened according to the formula A = rA∗cos(σo),

where rA is the size of the simulated feature in the direction corresponding to the

minor axis that for a circular feature corresponds to r, and σo is the slant of the

surface in the area of the feature. The major axis is simply B = rB, which for a
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circular feature corresponds to r. The measurement of these quantities was simulated

to contain an error with a normal distribution and standard deviation of sd[o] =

5arcsec for each measurement so that on the image, this error resulted on a random

distribution with sd[mm] = zftan(2/3600) = 0.0485mm. The simulated observer

can adopt two strategies to reconstruct the surface using the information from the

texture cue: 1) measure the values A and B for each of the features, estimate the

slant, and subsequently obtain curvature estimates by derivation of the local values

of slant and depth estimates by integration. 2) measure the change in the size of

the features across the image, estimate the local curvature, and subsequently obtain

slant and depth by integration. To obtain the estimate of slant, it is possible to use

the length of the minor axis A that has been foreshortened if one knows what is the

original dimension Ar on the surface. It is possible to make an adequate guess about

this dimension by assuming that Br is equal to Ar. This assumption is equivalent to

an isotropy assumption. In this way, by measuring B in the image and using it as

an estimate of Ar it is possible to have an estimate of σ since A = Ar ∗ cosσ[o] and

tanσ[o] = dz
A

= σ. In fact, since

σ′ =
Arsin(σ[o])

A
=

Ar

√
1− (cosσ[o])2

A
=

Ar

√
1− ( A

Ar
)
2

A
=

√
A2

r − A2

A
(4.1)

that becomes σ =
√

A2
r/A

2 − 1, to estimate the slant from the axis of the ellipse

it is possible to simply apply the formula σ =
√

B2/A2 − 1 to the ratio of the two



89

Figure 4.4: Rendering of the surface with shading cue.

orthogonal axis of the ellipse, which is defined as the eccentricity of the ellipse. To

estimate the curvature from the change in the horizontal dimension, instead, one has

to use the formula C = ∇
√

A2
r/A

2 − 1. This formula can be applied to the signals

coded as the difference in size between features (see Section 2.2).

4.3 Shading Simulation

To create a shading cue the surface described above was simulated to have Lam-

bertian reflectance properties and it was illuminated by a distant light source po-

sitioned 20o above the observer. The value of the incidence angle was manipu-

lated until the value of curvature between shading and texture cue were properly

equalized (see equalization Section 5.2). From this image, the luminance values
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Figure 4.5: Image signals related to the shading cue with and without noise. Top:
Shaded image used as a stimulus. Middle: luminance profile. Bottom: Gradient of
the luminance profile.

on the vertical line and passing trough the center of the surface were analyzed.

These values were quantized with a resolution of 20arcsec. The value of lumi-

nance at every quantized point in the image can be described by the formula I =

max
(
(tan(σ) ∗ cos(alpha) + sin(alpha))

√
(1 + tan(σ)2), 0

)
.

The obtained values of luminance were perturbed by a random value with a stan-

dard deviation equal to a fixed ratio of the luminance value s.d.x = 0.01 of Ix. To

simulate the effect of retinal diffraction (see Howard, 2002), a low pass filter was

applied to the perturbed signal using a zero-phase filter whose cutoff was set to be

60arcsec. The curvature of the surface was recovered indirectly trough an iterative

process. Starting from the center, it is possible to integrate the value of curvature
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Figure 4.6: Results of the motion simulation. The different columns depict the types
of information estimated. Left column: estimated depth. Middle column: estimated
slant. Right column: estimated curvature. Top row: average value of the properties
estimated in the different repetitions. The lines specify which information was picked
up in the stimulus to estimate each property. The pattern represents the type of direct
information used for the estimation, red for depth, green for slant, blue for curvature.
Bottom row: error in the estimation across trials computed as the standard error of
the estimate across repetitions.

to obtain slant starting with the assumption that at the center the slant is s(0) = 0

and curvature is C(0) = Ix cos(ah) where ah is the hypothesized position of the light

source. The iteration proceeds by calculating the slant at each point using the for-

mula s(x + 1) = s(x) + C(x) ∗ dx where dx = 20arcsec. The curvature at x + 1 can

be subsequently calculated from the gradient of luminance Ix.
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4.4 Results

The results of the simulation using the motion cue are shown in figure4.6; they indicate

that curvature estimated directly is most reliable and produces overestimation for

both slant and curvature. The first graph shows that the estimates of depth reproduce

the shape of the simulated surface. The second graph shows that the value of slant in

degrees is similar to the values simulated. The third graph shows that the estimated

curvature is underestimated when computed indirectly. Estimates obtained using

depth and slant information have a smaller amount of noise. Depth and slant can be

estimated with small amount of error while curvature cannot. In general the estimate

of curvature is more variable and does not allow for accurate estimates either directly

or indirectly. The simulated observer is better off calculating curvature starting from

the estimates of depth and slant.

The results of the simulation using the texture cue are shown in figure 4.7. The

average values of estimated depth and slant are similar to the simulated one. Curva-

ture, on the other hand, has a bias toward underestimation when calculated directly.

This means that the shape would appear less curved in the center compared with

the real shape. With the level of error chosen in the simulation, the estimates made

starting from the direct estimates of slant are more reliable than the ones made using

curvature. The error in the estimation of depth and curvature increases moving from

the center of the object to the periphery. This pattern does not appear for slant when

estimated directly. This difference in the pattern of noise is due to the fact that slant
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Figure 4.7: Results of the texture simulation. See caption of figure 4.6.

is estimated locally, however to estimate indirect properties the simulated observer

computes an integral or a derivative. These computations increase the error when

more steps are needed because the errors add up.

The results obtained with the shading cue are generally more variable and subject

to more errors than the one obtained with motion and texture, as figure 4.8 shows.

The only property that can be estimated directly is curvature, so the graph contains

only one plot. The graphs depicting the average estimate indicates that depth is

underestimated on the illuminated part of the surface when compared with the side

in shadow. The estimated slant has a discontinuity in the middle of the figure.

Curvature changes gradually across the surface, with a peak near the center on the

shadow side, where the penumbra begins. In the most illuminated part of the surface,
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Figure 4.8: Results of the shading simulation. See caption of figure 4.6.

there is an evident decrease of perceived slant and depth. At this level of noise, the

amount of noise in the estimate of curvature is comparable to what was obtained

directly from the other two cues. At the same time, the error in the estimate of slant

and depth rapidly increase when moving from the center of the surface toward the

illuminant.

This simulation introduces noise in the measurement of the image signals, but

does not consider noise in the computation of the property. In fact, if the visual

system is able to estimate one property directly, the level of noise for the property is

less than the one computed using its value because of neural noise. Even without this

factor, the simulation already demonstrates that an optimal visual system produces

direct estimates of properties that are more accurate than indirect ones. Depth and
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slant from the velocity signals have lower noise than curvature and depth is more

reliable at the center of the shape. Slant from the texture signal is more reliable than

curvature and depth especially when computed directly. Finally, depth and slant have

low variability at the center, but the error increases for the parts in light whereas for

the curvature the increase in noise is less significant.
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“Experience is the name everyone gives to their mistakes.” Oscar Wilde,

Lady Windermere’s Fan, 1892, Act III

I showed that cues carry different information regarding shape properties. For

certain properties there exist an image signal that can be detected and used to make

an estimate. For other properties, there is no signal that can serve this purpose and

the visual system can only rely on an indirect computation of the property. Here I

want to demonstrate that the visual system does not consider cues to be equivalent

as often it is assumed.

If cues are not equivalent in specifying different properties, a task that based

on a specified property should provide different performance than the one based on

other properties. A single shape will be judged differently depending on the task.

Two shapes perceptually equal for one property are not necessarily equal for other

properties. In the first experiment I will verify this prediction. I will first equalize

two cues in one property and then compare the shapes for other properties.

If cues are perceived differently depending on the property judged, what happen

when cues are contemporary present on the same object? It is possible that the

information provided by the cue is joined to create a representation that exploits all

properties specified by the cues, or perhaps the properties of shape are analyzed in

isolation and the cues are combined differently for each of the properties. The second

experiment will test these possibilities. I will measure the informativeness of cues for

different properties and explore the behavior of the visual system when multiple cues



99

are present.

The third experiment is designed to test whether the perception of shape prop-

erties can be accounted for by a single shape. Judgment of properties at different

points on the surface can be used to estimate the profile of the shape most coher-

ent with these judgments. The reconstructed shape is an estimate of the property

from which the judgments have been made. Differences in the shape reconstructed

are an indication of the processing of information by the visual system. Similar

shapes obtained with different task would indicate that properties are evaluated from

a common medium. Shapes that significantly differ from each other would instead

indicate that the properties of shape are analyzed independently and accessed when

the task requires so. In this case, the perceived shape would be multiply analyzed

and represented in the visual system.

5.1 General methods

Observers

Participants were undergraduate and graduate students from Brown University. They

had normal or corrected-to-normal vision, they were näıve to the purpose of the study

but some of them were familiar with psychophysical experiments. Participation was

voluntary, all participants provided written consent and the undergraduate students

were paid for their time. The only exception is when I participated and this is specified
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in the description of the experiment.

Apparatus

The stimulus displays were presented on a ViewSonic P70f color monitor controlled

via a Dell Dimension 8100 with a Nvidia FX9600 graphic card. The resolution of the

monitor was 1280x1024 and the refresh rate was 60Hz. Brightness and contrast of

the monitor were reduced at 15% of the maximum. The luminance of the monitor

was linearized using photodiodes and a custom procedure. The experiment and the

stimuli were created and displayed using custom software that makes use of OpenGL

libraries. Stimuli were rendered at 60fps. A custom procedure for spatial calibration

of the stimuli was employed.

The monitor was viewed monocularly using an eyepatch and a chin rest. The

viewing distance was kept at 250cm to prevent the use of accommodation cues (e.g.

Mather, 1997)(Watt, Akeley, Ernst, & Banks, 2005). An occlusion screen limited

the portion of the monitor visible from the chin rest to a 20x20cm square region

(4o35′ of viewing angle). A series of screens was positioned in front and around the

monitor to prevent the participant from viewing any internal part of the apparatus.

The screen was occluded to the view until the screen was darkened to reinforce the

impression that the stimuli were tangible objects inside a box. A dim light source

(5W ) positioned on the floor under the table supporting the apparatus and away

from the line of sight maintained a small amount of light in the room to prevent dark
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adaptation.

Stimuli

The stimulus depicted a smooth convex surface of revolution with quadratic profile

displayed in parallel projection. The surface was defined by the formula

z = S(x2 + y2) + z0 (5.1)

where S is called the “stretch factor” that determines the profile of the surface along

the depth dimension, z is the simulated depth in cm behind the monitor’s surface and

x and y are the position on the monitor in cm and z0 is the distance of the monitor

from the participant. I will use this convention to indicate the stretch factor: Sx

indicates a surface of stretch factor S containing only one cue (x), S2 or Sab indicates

a surface with two cues (a and b), S3 indicates a surface with 3 cues, SP
3.x indicates a

surface with three cues that has the same magnitude of the property P as the surface

containing the cue x. The surface contour was the same in all trials; it was a circle

with radius rb = 5cm (1o09′).

The surface was simulated using three independent sources of information: motion,

texture and shading. In the different shapes, these sources of information were created

by changing the value of the stretch factor Sx in the formula. This value changes the

depth profile of the surface: low values simulate a flatter ellipsoid, and high values

create an oblong shape. The cues could be showed independently, so that they could
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be either present or absent from the stimulus. For example, one shape might have

contained shading and motion while another could have contained only texture. The

details of how the stimuli were generated when every cue was presented in isolation

are described below and in figure 5.1.

Motion: The surface had a simulated low albedo and there were a number of high

albedo dots (diameter = 0.1cm). The dots were randomly distributed on the

image plane and the minimum distance between the center of the dots was

0.25cm. The motion of the contour and of the dots simulated a 1 Hz sinusoidal

oscillation around a vertical axis passing through the surface at half its depth.

The projected shape of the dots on the image did not change at any point of

the rotation and the surface contour moved rigidly with the surface.

Texture: A volumetric texture technique was employed to generate a sculptured

representation of the surface. The surface intersected a number of spheres with

0.5cm diameter, which center coincided with the surface. The minimum dis-

tance in 3D between the center of the spheres was 0.75cm. Points of the surface

contained in the spheres had a different simulated albedo than points outside.

An antialiasing technique was used to create a smooth border between the two

regions. In the experiment described in Chapter 7 the spheres did not coincide

with the surface, instead their position was randomized in the volume to be

carved out.

Shading: A standard Phong model with Lambertian reflectance function determined
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the amount of screen luminance at every point (J. D. Foley & Dam, 1983). Since

the object was convex, no shadow was needed in the model. The simulated light

source was positioned on a plane tilted 15o on the right from the vertical. The

angle subtended between its rays and the line of sight was varied in different

conditions. The light source consisted of an array of nine parallel-rays lights

spaced 5o apart in the two directions and disposed in a square array. This

extended illumination source resembles the type of lights we encounter everyday

and creates a realistic appearance of the shape. Small dots with low albedo were

present on the surface to make this stimulus consistent to the other two cues.

These dots are also necessary to create a velocity signal with stimuli containing

motion and shading that is consistent with the one obtained by motion alone.

Figure 5.1: The stimulus used in the experiments with different cues.

For stimuli that contained two or three cues this scheme was slightly modified.

For multi-cue stimuli that included texture, the albedo of the surface was determined
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only by the volumetric procedure and the small dots described above were not used.

For stimuli that contained shading, the albedo of the surface was high and the albedo

of the spheres and dots was low. When the shading cue was absent, the contrast was

reversed so that the surface was brighter than the circle or the dots.

Procedure

All the participants were run individually. After the subject had read the instruction

sheet, the experiment started with a signal-equalization session described in Section

5.2 and continued with a number of sessions timed to end after two 25-minutes blocks

that contained a variable number of trials.

In each of the trials, the participant was presented with an icon indicating the

type of judgment they had to make about the shape. After 300ms the icon disap-

peared and two stimuli appeared sequentially for 1000ms each on the two sides of

the screen(except for the experiment in Chapter 7 where the stimuli were displayed

continuously). The participant was asked to compare the two stimuli according to

the type of judgment required by the icon. When a response was given, the next icon

appeared. The three judgments required to the participant are (see figure 5.2):

• Depth, where the participant judged the elongation of the surface in depth

from the tip to its base (from the center of the projected image to the bounding

contour);

• Orientation, where the participant judged the slant of the surface at the near
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Figure 5.2: Geometric properties of the stimuli that participant judged during the
experiments.

Geometric Property Formula

Depth S ′D = D′[cm]/r2
b

Orientation S ′O = tan(90−O′[o])/rb

Curvature S ′C = C ′

Table 5.1: Formula that related the geometric property participants judge and the
stretch factor S

the bounding contour at the top of the stimulus;

• Curvature, where the participant judges the curvature of the surface at the tip

(the closest point to the subject and the center of the projected image).

These judgment are based on three geometric properties of shape {D′, O′, C ′}

whose magnitude is related to the stretch factor S in formula 5.1, as described in

table 5.1.

All variables were studied within participants. Psychometric functions were fitted
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using psignifit version 2.5.6 (see http://bootstrap-software.org/psignifit/), a software

package which implements the maximum-likelihood method described by Wichmann

and Hill (2001). Confidence intervals were found by the BCa bootstrap method

implemented by psignifit, based on 500 simulations.

5.2 Equalization

The goal of this procedure was to normalize the perceived magnitude of curvature

of two surfaces. The participant saw two stimuli on the screen: one was defined by

texture, and the other by either motion or shading. The subject was then asked

to choose the stimulus that appeared to have a greater curvature at the center. The

angle of rotation (for the moving object) and direction of illumination (for the shaded

object) were varied as independent variables as depicted in figure 5.3. These two

parameters influence significantly shape perception (Curran & Johnston, 1994, 1996;

Domini & Caudek, 1999; Perotti et al., 1998) Four interleaved staircases (3-1 2-1 1-2

2-3) were employed to find the angle of illumination φ and rotation ω which would

equate the perceived curvature for the three cues. The staircases started at 60, 50, 20,

10 degrees for the rotation and 30, 25, 10, 5 degrees for the motion. The staircase step

was 5 degrees before the first reversal and 1 degree afterwards. The session stopped

after 3 reversals for each staircase. If the staircases were not completed within the 25

minutes session or if the fit did not converge, the participant’s data was not analyzed.

Participants compared the perceived curvature of the texture stimulus with the
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Figure 5.3: Angles used as independent variable of the staircases in the Equalization
session.

perceived curvature from the motion or shading stimulus. The three simulated sur-

faces had the same stretch factor S (S = 0.03 in the first experiment, S = 0.045 in

the second experiment, and S = 0.2 in the third experiment). I found the angle of ro-

tation for the motion stimulus and the angle of illumination for the shading stimulus

so that perceived curvature from motion and shading matched perceived curvature

from texture. These values were then used in the rest of the experiment
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Chapter 6
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In the classic accounts of shape perception like MWF, it is assumed that all cues

provide the same type of information about shape. Initially, each cue is analyzed in

isolation by a module that computes an estimate of shape in the form of a depth

map. Subsequently, all depth maps are averaged according to the reliability of cues

in order to achieve a unique representation of shape. Other geometric properties can

then be computed from this single representation.

In this experiment I demonstrate that cues are differentially informative about

geometric properties of shape. I manipulated the viewing condition in order to make

different surfaces perceptually equivalent in one property and then compared them

for other properties. If cues were equally informative about different geometric prop-

erties, the two surfaces would be perceived as equal also for other properties. If they

are perceived as being different, the perception of geometric properties cannot be con-

sistent and each aspect of shape must be extracted directly from the image signals.

This result would explain why tasks that require estimation of different geometric

properties yield inconsistent response patterns.

6.1 Method

The participants were ten undergraduate students näıve to the purpose of the ex-

periment. The experiment began with the equalization session described in 5.2. For

each participant the angles computed were used in the rest of the experiment. All

participants completed the experiment in 2 sessions plus the equalization.
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In the experimental sessions, participants compared the texture stimulus with the

motion and the shading stimulus for each of the three tasks in figure 5.2. They pressed

a mouse button to select the stimuli that appeared to have a larger magnitude for the

property specified for the task. The two stimuli appeared sequentially for two seconds

each. The shape of the texture stimuli was defined by a stretch factor S = 0.03. The

shape of the motion and shading stimuli was changed by applying a different stretch

factor S. The value of S was determined using four interleaved staircases as described

for the equalization in 5.2 starting at 2.0, 1.5, 1.0, and 0.5 times the stretch of the

texture stimulus. The staircase’s step was 0.125 times the stretch of the texture

stimulus. A 2x3 design consisted of two cue conditions (either motion or shading was

compared to texture) and the three task conditions that defined the property judged

by the participant (depth, slant, curvature).

6.2 Results

Participants described the stimuli as being egg-like objects or cones. Some observers

reported that some shapes appeared initially to be concave but they were able to flip

them without effort. Participants found the comparison of the shape properties to be

easy to perform. The psychometric function obtained in the Equalization session for

a sample subject is shown in figure 6.1.

The PSE for curvature between the motion and the texture stimuli was achieved
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Figure 6.1: Psychometric curves in the equalization session for one participant.

with an angle of rotation that across observers was 14.5o ± 4.3o(s.e.). For the com-

parison of shading and texture, the angle of illumination was 24.9318o ± 4.1o(s.e.).

Figure 6.2 shows the result of the fit in the experimental conditions for one subject.

The left graph indicates that the PSE between motion and texture is obtained with

a smaller stretch of the motion stimulus than the one for judgments of slant and

curvature. The higher slope of the curve for the comparison of depth indicates higher

reliability for this judgment. The right graph indicates that the PSE between shading

and texture is obtained with a stretch factor of the shading stimulus that is smaller

for judgments of curvature than the one required for judgments of depth and slant.

Slant judgments are also somewhat less accurate. The value of the PSE in the six

experimental conditions and the standard deviations estimated from the psychometric

curves are summarized in figure 6.3.
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Figure 6.2: Subject 06. Left: Responses in the condition motion-texture as a function
of the Stretch factor of the motion stimulus and fit with psychometric function for
the three tasks. Right: same graph for the shading-texture condition.

A 2(cue: motion-texture, shading-texture) x 3(task: depth, slant, curvature)

repeated-measure analysis of variance (ANOVA) on the stretch factor required to

obtain the PSE revealed a main effect of cue-pair (F (1, 9) = 68.634, p < 0.001) and

a main effect of the task (F (1, 9) = 27.700, p < 0.001). The interaction between the

two independent variables was also significant (F (2, 18) =, p < 0.001).

One tail t-test reveal that for the motion-texture pair, the stretch factor for depth

was smaller than the one for curvature (t(18) = 2.0688, p = 0.026) and the one for

slant was larger than the one for curvature (t(18) = 1.6071, p = 0.062). This indicates

that the to perceive the same property magnitude the simulated curvature needed to

be larger than curvature for slant and smaller for depth. For the shading-texture pair,

the same t-test revealed that both depth and slant were larger than the curvature
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Figure 6.3: Average values obtained from the psychometric fit Top: PSE Stretch Fac-
tor. Bottom: Mean of subjects Standard Deviation estimated from the psychometric
function. The error bars are the standard error of the mean across observers.
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(t(18) = −4.5712, p < 0.001; t(18) = −3.3138, p < 0.01). For both depth and slant

comparisons, the PSE was obtained with a larger simulated shape of the shading

stimulus.

The high values of the standard deviations registered in this experiment (fig-

ure 6.3) indicate a low reliability of the judgments. The ANOVA computed on the

standard deviation of the stretch factor revealed a main effect of the task (F (1, 9) =

3.876, p < 0.05) while the cue-pair was not significant (F (1, 9) = 1.443, p = 0.260) and

neither was the interaction (F (2, 18) = 2.052, p = 0.158). The single tail t-tests re-

vealed no significant difference in standard deviation for the motion-texture conditions

(t(18) = −0.1906, p = 0.57452; t(18) = 1.0644, p = 0.1506) while for shading-texture

the standard deviations differed significantly (t(18) = −4.0787, p < 0.001; t(18) =

−2.6201, p < 0.01).

The variability of participants’ judgments computed as Weber fractions by di-

viding the standard deviations by the mean stretch factor for each stimulus and

each observer is reported in figure 6.4. These values indicate a variability of the

estimate that spans 25-100% of the PSE. The inter-subject variability is also con-

spicuous for the motion stimulus in the slant and depth judgments. The inter-

subject variability is most likely due to a limited number of repetition of the mea-

surement. The ANOVA on the Weber fraction revealed that neither the main ef-

fects (F (1, 9) = 2.983, p = 0.118; F (1, 9) = 0.623, p = 0.547) nor the interaction

(F (2, 18) = 0.464, p = 0.636) were significant.
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Figure 6.4: Average Weber fraction

6.3 Discussion

Classic models of perception based on a unique representation of shape predict that

by equalizing curvature the perceived shape should be equal also for other proper-

ties. The representation of the shape should be either unique or equivalent with

different properties. Shape comparison of single-cue stimuli should not be affected by

which property is being judged. Contrarily, the results indicate that when two shapes

are perceived as having the same curvature, shape comparisons for other geometric

properties are still affected by the task performed. When cues differ in the type of

information they provide as discussed in Chapter 2, the perceived property reflects

this difference. Motion information is reliable for depth but less for slant judgments

whereas texture information is reliable for slant and curvature but not for depth.

Shading information is reliable for curvature but not for slant and depth, whereas

texture information is reliable for slant and not reliable for curvature as shading is.

When cues are not equivalent in the type of information they provide, there are two
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possibilities. The first possibility is that the stimulus that varies in shape contains a

cue that specifies a property with a greater magnitude than texture, as in the case

of motion for depth. In this case, the relative stretch factor required for the varied

stimuli is less than the one required for the curvature (that has been equalized across

stimuli). The motion signal specifies a larger perceived depth than the texture does

and a smaller stretch factor is needed when comparing depth. The second possibility

is that the varied stimulus specifies the property with lower magnitude than texture,

as in the case of shading for slant. In this case, the varied stimulus needs a higher

value of the property to be perceived as equal to texture. The shading signal specifies

a smaller perceived slant than the texture does and a larger stretch factor is needed

when comparing slant.

It is interesting to notice that when comparing two stimuli generated with different

cues the property judged is extremely important. In the case of a static textured

stimulus and one defined only by the motion of punctiform features, the perceived

magnitude of different properties that can be used to describe 3D shape changes

significantly. In this experiment it is shown that although three shapes are equalized

so to have the same perceived curvature, texture is still more slanted toward the

contour but less deep, and motion is more elongated in depth but less slanted.

There are three possible explanations that can be offered to explain this phe-

nomenon. The first possibility is that judging different properties changes the way
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cues are interpreted in the construction of a unique representation of shape. For ex-

ample, in the Bayesian account of human perception it is argued that different priors

are used in the interpretation of the information when a property is judged. Although

this is a possibility that cannot be ruled out by these findings, it is still not clear how

the different judgments are integrated in a unique representation. In this experiment

the judgments are not made on the same position so it is possible that the integration

of the different properties creates a representation of shape that is not veridical and

does not conform to the simulated quadratic shape. This possibility is addressed in

the experiment in Chapter 7.

The second possibility is that, notwithstanding the precautions taken in the ex-

periment, the stimuli contained cues to flatness that are not accounted for in the

analysis of the signal (see Section 3.1). These cues are combined as every other type

of cues with the information provided by the simulated stimuli. The weights assigned

to the cues depends on the reliability of the estimate which in turn varies with the

tasks (this possibility is consistent with the PSE registered). The Weber fractions,

however, indicate that there is no change in performance for the two stimulus pairs in

judging different properties. Although this result may be due to very large variability

in the motion condition, no change in performance across the six condition indicates

that there is no change in the reliability of the information provided in the display.

According to the MWF and any other account based cue weighting, the weight as-

signed to cues must be the same because the reliability is the equivalent. If the cue to
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flatness do not change when changing type of stimulus, and because the weight sum

to one, the weight assigned to the cue to flatness is also the same across conditions.

Their influence does not change, it only decreases the magnitude of the perceived

property. The classical formulation of the cues to flatness cannot account for these

results. However, the possibility that cues to flatness change depending on the stimu-

lus used cannot be ruled out. This possibility will be considered in more detail in the

next experiment. Moreover, if task determines a different set of weights, perceived

shape should change when switching tasks. If the judged property changes the whole

representation of shape, there would not be a shape constancy as the task changes.

Our experience of the world does not conform to a world that changes continuously.

A third explanation involves the tendency that certain shapes have to appear

concave rather than convex. This possibility could explain why certain properties

were be judged to have a greater magnitude. For example, depth judgments would

be greatly affected by a depth reversal whereas slant judgments near the occluding

contour would be more consistent. This explanation does not apply to the difference

that cues have in the specification of a property. The effect should be the same for

the three cues and should not invert as it does comparing motion and shading. If

cues have a different tendency to appear concave in different parts of the image the

perceived shape should appear distorted. This possibility is investigated with the

experiment described in Chapter 8.

The explanation I propose is that cues provide different information for each of the
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properties analyzed in this experiment. The property to be judged is based on only

one source of information and the information is differently biased. In other words,

different image signals independently specify properties of shape and the perception

of one property is independent from that of other properties. The representation of

shape according to one property might be different from that based on another prop-

erty, even though the signals are related by a geometric constraint. A slanted surface,

for example, is necessarily related to a gradient of depth values. The two signals

created by the difference in depth of points on the surface and by the orientation are

therefore necessarily related by the laws of differential geometry. The measurement

of these signals, however, is affected by noise and the noise has a different effect on

them. According to the ICModel described in Section 3.2, for example, the perceived

magnitude of a property is scaled by the noise level. Thus the difference in noise

between signals generates a difference in estimation of the two properties when rep-

resented independently. The IC model’s original formulation does comprises only one

representation of shape. However, the heuristical processing of information that char-

acterize its functioning allows for modifications like the simultaneous representation

of different properties.

It is important to underscore that the MWF account of perception cannot be

applied to this case. This model would require cues to be promoted to depth-maps

using the information available from other cues. However, in this experiment the

cues are presented in isolation so they cannot be be possibly promoted. This model
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may be reformulated to conceive cues as being informative also about other geometric

properties, but this would still not explain the data collected for two reasons. First,

the MWF states that variation in the estimate of a property is only due to the effect

of noise and there are no biases in the modules. The data collected exhibit a constant

deviation from the veridical estimates hypothesized by the model. Second, the MWF

states that the goal of the visual system is to reconstruct a unique representation

of shape (even if we suppose that it is not in the form of a depth map). The three

properties required by the tasks are derived from this representation and therefore

they are necessarily consistent. Third, the possibility that a task would weight a

particular cue more than another is ruled out because the stimuli have only one cue

each unless one assumes that there are cue to flatness in the display.

The results of this experiment allow us to conclude that cues are differentially

informative about geometric properties of shape. Judging different properties of the

same shape induces a pattern of inconsistent responses according to the relationship

existing between image signal, property, and the amount of noise in the signal.

6.4 Simulation of experimental conditions

To test the proposed explanation, that the image signals provide different information

for each of the properties judged by the participant, I used the method described in

Chapter 4 to simulate the same experimental conditions and information. The ideal

observer described uses the same type of information as the subjects would, if they
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Motion Texture Shading
Curvature [mm−1] 0.086 0.084 0.085
Slant [o] 74.44 66.82 34.71
Depth [mm] 77.87 39.83 15.15

Table 6.1: Averages of the estimated properties for single cue stimuli with the same
viewing conditions as in the single-cue experiment.

analyzed the information independently for each property. If this simulation produces

a pattern of results that is coherent with the responses given by the subjects, it is

likely that the type of strategy used to compute an estimate is the same.

The simulation was conceived to compute a perceptual estimate for each task

and each cue presented to the participants. A window of 2cm was defined on the

stimulus at the center for the curvature judgment, at the top for the slant, and in

both positions for the depth estimate. The average values of the estimated property

were computed from the image signals created by the stimuli of the experiment.

The averaged estimated properties for 50 trials are shown in table 6.1. These are

the estimated values obtained by averaging the different results for the points that

fell within the window. If the cue allowed for multiple estimates, the values were

averaged. For the slant, the computation was done in terms of the tangent of the

angle. The value in degrees in the table was computed only afterwards.

Table 6.1 shows that once the cues are equalized in terms of curvature, the slant

obtained by shading was smaller than the one obtained by motion and texture. The

pattern of responses predicted from these values and shown in figure 6.5 support the

interpretation hypothesized in the section above regarding the independence of the
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estimated properties. This pattern is very similar to the one registered experimentally

(r2 = 0.92). If the image signals are treated as independent sources of information

for one geometric property, the projection of a single-cue shape specifies inconsistent

values.

Figure 6.5: Results of the simulation of the estimated properties for single cues.

The estimated depth has a significant value for motion, an intermediate one for

texture and a small value for shading. Therefore, the shaded stimulus perceived to

have the same magnitude as texture needs to be equal for curvature, but larger for

slant and depth as shown in figure 6.5. For motion, the stimulus needs to be flatter

for depth and equal for curvature. Contrary to what has been found in the empirical

data, if the simulated motion and texture shape are equal, the perceived slant is also

almost equal. It is unclear why the perceived slant from motion information is larger

than the prediction. It is possible that such a difference is only apparent and due

to the choice of a Euclidean solution. The relative magnitude of slant and depth

estimates for the motion and texture cues are opposite. A different type of noise

model for one of the signals (i.e. a multiplicative noise for the motion as described
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in Section 2.1) with a larger amount of noise might have led to a result compatible

with the human data. This hypothesis needs to be tested with a new set of simulated

data.



Chapter 7

Experiment 2: Multiple cue

comparisons
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The visual system measures image signals and uses these values to compute the

geometric properties of shape in the scene. Each of the two processes required for

the estimation of a property (measurement and computation) are sources of noise

that decreased precision. Both steps, measurement and computation, are imprecise

because of biological limitations.

Direct estimation of a property from an image signal leads to lower noise because of

the small number of steps required in the computation. On the other hand, estimates

that require complex computations or that involve more than one measurement bear

lower magnitude of the perceived property, even if they are derived from the very

same signals used for the direct estimate of a different property as the one above.

When shape is defined by a single cue, the estimate of a property will be affected

by smaller amounts of noise if that cue allows an estimation of a property with fewer

steps. According to the IC Model, the signal is scaled by the amount of noise in

its measurement. Therefore cues that lead to lower noise in the estimate will also

produce a larger estimate of the property.

Here I want to measure this effect and be able to differentiate cues by the type

of information they provide. This measurement is a direct estimate of the influence

of a cue on the perception of different shape properties. Moreover, I want to test the

hypothesis that cue combination is done independently for each property of shape.

The information provided by a cue can be combined with what is provided by other

cues, but independently for each property. If this is the case, the information carried
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by each cue in isolation for a property can be used to determine the perceptual

solution when more than one cue is present, but only for that property.

7.1 Method

Four undergraduate students, one graduate student and I participated in the exper-

iment. Except for myself, the other participants were näıve to the purpose of the

study but all were familiar with psychophysical experiments.

All of the participants completed the experiment in five sessions plus the equal-

ization. Sessions were composed of two 25-minutes blocks and contained a variable

number of trials. The experiment started with the equalization session with a shape

defined by a stretch factor S = 0.045.

Participants compared one target property (depth, slant, or curvature) of two

stimuli, the test and the probe. The test stimulus was defined by various combinations

of cues. The probe was simulated using all three cues at the same time (motion,

texture and shading) and was changed in shape across trials. For each condition,

a 1-up-1-down staircase procedure was used to find the amount of stretch of the

probe stimulus composed by three cues S3 that was necessary to perceive the same

magnitude of the target property as in the test stimulus. The initial value of stretch

S3 used in the staircase was alternated to be higher and lower than the value of the

test in the different sessions (0.5 and 1.8 times respectively).

There were 36 different conditions: six cue conditions crossed with two stretch factor
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conditions and the three task conditions. The cue conditions included three condi-

tions with single-cue test stimuli and three conditions with paired-cue stimuli. In the

single-cue conditions, the test stimulus was defined by only one cue (motion, texture,

shading). The shape of the test stimulus was defined by a stretch ratio that was 1.00

time or 1.66 times the shape used in the equalization (stretch factor conditions). In

the paired-cue conditions, the test stimulus was defined by using the three possible

combinations of cue pairs (motion-texture, motion-shading, texture-shading). The

two cues were generated by the same surface, with the same stretch factor, either

1.00 or 1.66 times larger than the equalization.

7.2 Results

Single cue conditions: Figure 7.1 shows the values of the stretch factor S3.x for which

the probe stimulus and the single cue test stimulus appeared to be perceptually equal,

when judging the three target properties. Lower bars indicate that the PSE between

the probe and the test stimulus was obtained with smaller values of S3, the stretching

of the probe. This value is measurement indicates the magnitude of the perceived

property with relation to the probe. Values closer to the relative stretch factor (1.00

and 1.66) indicate that the property of the test stimulus has been perceived veridically.

Lower values indicate underestimation of the property with respect to the simulated

value. The magnitude of the PSE is also an index of the information conveyed by the

cue about a property.
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The comparison of PSE across tasks indicates that different properties are not

perceived consistently for the same stimulus. They follow the prediction I expected

from the signal analysis. Motion is informative about depth, texture is informative

about slant and curvature, and shading is informative about curvature. This pattern is

more definite in surfaces created using higher stretch factor. The equalization worked

for curvature judgments with a stretch factor of 1.00. In fact, for the curvature

task and simulated stretch equal to the equalization, there is no statistical effect of

cue (1 way ANOVA (cue) repeated measures, F (2, 10) = 0.056, p = 0.946). The

equalization, however, was effective only at this level. A 2 way ANOVA (cue and

stretch) has a significant main effect of stretch ratio (F (1, 5) = 35.584, p < 0.01) and

a significant interaction cue by stretch (F (2, 10) = 6.547, p < 0.01).

Figure 7.1: Average values obtained from the psychometric fit of the stretch factor
of the probe stimulus when compared with single cues test stimuli.

A 3 way ANOVA (task, cue, simulated stretch) shows a main effect of stretch
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(F (1, 5) = 26.878, p < 0.01) a task-stretch interaction (t(2, 10) = 8.373, p < 0.01)

and a task-cue-stretch (t(4, 20) = 5.265, p < 0.005) interaction. The effect of stretch

and task-stretch simply indicates that the simulated stretch influences the perceived

properties. Higher values of stretch factor bear greater perceived magnitude of the

property especially for one of the tasks. The three way interaction indicates that

the increase in perceived magnitude property dependent also on the cue. If the

cue is informative for a property according to the analysis proposed, the magnitude

perceived will increase more than the non specified properties.

The stretching factor of the probe S3.1 in the single cue conditions is significantly

smaller (t(5) = −8.3893, p < 0.001; t(5) = −14.8246, p < 0.001) than the one simu-

lated for the test stimulus S1 = 1 and S2 = 1.66 respectively. The average values are

in fact S1′ = 0.72± 0.07(s.e.), S2′ = 1.07± 0.12(s.e.).

Figure 7.2: Stretch factor of the probe stimulus required for the perception of the
same geometric property as the paired-cue stimulus.
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Paired-cue conditions: Figure 7.2 shows the values of the stretch factor S3.2 of

the that created the same perceived property as the test. Perceived properties are

not completely coherent even with stimuli composed of two cues. The perceived

properties stimulus are coherent for the motion-texture stimulus, but they are not for

the other two pairs. The texture-shading stimulus induces higher values of curvature

and the texture-shading stimulus induces lower magnitudes of perceived depth and

higher magnitudes of perceived curvature. Perceived depth for this stimulus is less

than what would be needed to simulate the perceived curvature and orientation.

A three way ANOVA (task, cue-pair, simulated stretch) indicates that the only

significant factors are the main effect of stretch ratio (F (1, 5) = 242.367, p < 0.001)

and the 3-way interaction (F (4, 20) = 2.921, p < 0.05). The same analysis on the

standard deviation obtained from the estimated psychometric function, indicates that

the only significant factor is the simulated stretch (F (1, 5) = 19.449, p < 0.01). The

ANOVA on the Weber fractions, instead showed a significant interaction between the

three factors (F (4, 20) = 3.994, p < 0.05).

7.3 Discussion

In this experiment I measured the relative contribution cues have for the perception

of different geometric properties of shape. Using a probe composed of all cues used

in the stimuli, I could measure the relative contribution of each cue relatively to this

maximal standard. This value constitutes a standard to which all information in the
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experiment can be compared. Underestimations in the perception of shape properties

from cues are indicated by a lower value of magnitude of the probe.

Cues provide information only for some properties: depth for motion, slant and

curvature for texture, and curvature for slant. The difference in the information

provided can be quantized in figure 7.1. Judgments about shape depend on both the

cues and the judged property.

When cues are combined, the information about shape is processed independently

for each property. The judgment depends on the task also when more than one cue

is present. It appears that the properties judged on the paired-cue stimuli might be

related to the information available from the cue in isolation. For example, in the

texture-shading stimuli in figure 7.2 depth is smaller than slant that in turn is smaller

than curvature. Both texture and shading provide information about curvature and

only texture can provide information for a reliable perception of slant. Neither cue

allow to estimate depth (see 7.1). It appears that the magnitude of the perceived

property of the two cues in isolation is related to the magnitude when combined. I

will now use the IC model to relate the judgments in single and paired stimuli. In

the final part of this discussion I will define the formulas to predict the participant’s

results in paired-cue stimuli from the data obtained in the single-cue stimuli for each

of the three properties. This prediction can be made without free parameters or

weights.

Other possible explanations of this data may be made using different theoretical
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frameworks. For example, it is possible to use a Bayesian approach to describe the

noise in the measurements for each of the cues (for example Kersten, Mamassian, &

Yuille, 2004). The probability distribution of the cue should change when a different

task is given to the subject because it specifies a different “cost function”. For ex-

ample, this approach has been modeled by Schrater and Kersten (2000) who analyze

the influence of the same information on different representations. Bayesian inference

requires choosing a common depth representation to combine the cues, but there are

different options regarding which type of depth comparisons are made explicit. As

the authors did for size and shadow position, an explanation of these results can not

be achieved by analyzing only the informational contribution of each cue. The au-

thors admit that for the Bayesian framework to work, the whole posterior probability

distribution must be computed (which is not always straightforward). The approach

that I propose, as it will be seen below, does not require any more knowledge nor

parameters in the prediction of the combined results.

This experiment requires the subject to compare two stimuli, a probe created

using 3 cues (motion, texture and shading) with a stretch defined by S3 and a test

created either by using 2 cues (a and b) or 1 cue (x) with a stretch defined by Sa,

Sb or Sx respectively. A staircase procedure was used to modify the probe stimulus

until the perceived shape property (depth, orientation and curvature) was matched

to the test stimulus. According to the IC Model, when the test and probe stimuli are

perceived as having the same property P , the magnitude of the perceived property
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πP
3 of the test is equal to the one of the single cue test πP

x or the cue pair test πP
2 . I

will use this convention: x is one of the three cues used in isolation (motion, texture

and shading) and the numbers 2 and 3 indicate how many cues are present in the

stimulus. So S3.2 indicates the stretch factor of the probe when matched with a cue

pair and S3.a is the value when matched with cue a. At the PSE, πP
3.2 = πP

2 for one

comparison and πP
3.1 = πP

x for the other, where the indexes 3.1 and 3.2 indicate the

different comparisons.

The IC model discussed in Section 3.2 hypothesizes that perception of a prop-

erty πP
x is related to ρ (that is the score obtained from the PCA of the standard-

ized image signals described in Section 3.2) by a monotonically increasing function

πP
x = f(ρP

x ). At the PSE, by combining this and the above formulas, we have the

equalities f(ρP
3.1) = g(ρP

x ) and f(ρP
3.2) = h(ρP

2 ). If we make the assumption that the

function relating the PCA score ρP
x to the perceived quantity πP

x does not change for

a particular property in different conditions of stimulation, we can describe the goal

of the experiment as finding the stimuli that satisfies ρP
3.1 = ρP

x and ρP
3.2 = ρP

2 for the

three properties P , the two simulated stretches S and the six cue conditions.

Equalization

Since the rotation and direction of illumination calculated in the equalization session

are used in every stimulus, the test stimulus defined by single cues should appear

to have the same amount of curvature. This minimizes fluctuations in the perceived
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shape that are not due to the factor of interest. In fact, the equalization should insure

that for the same simulated stretch Sm = St = Ss there is the same perceived πC
x and

consequently the same ρC
x for curvature for the three cues.

In the experimental session, if no other factors influence the perception of shape,

the pattern of responses should also be equal for the other two properties. If there are

no differences in the perceived shape with different tasks in single-cue conditions we

should find that the matching shapes are equal (SD
x = SO

x = SC
x ). Modifications from

this scheme would indicate that there is some interaction between the cue contained

in the stimulus and the task. I expect that the conditions were the property can

be estimated in a smaller number of steps by a cue, and indirectly by another cue,

should produce a PSE where Sd > S ′i as quantized below.

Standardization

In the IC model, the quantity ρP
x for a stimulus defined by a single cue x is equal to

the standardized signal S̄x,

ρP
x = S̄x. (7.1)

The standardized signal S̄x is equivalent to:

S̄x = k̄P
x Px + ε̄x (7.2)
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where ε̄x is the standardized error term in the measurement P̄x with mean 0 and

variability 1 and k̄P
x is the proportionality constant for the cue x and the distal

property P . The standardization is obtained by the formula specifying the non-

standardized signal:

Sx = kP
x Px + εx (7.3)

By dividing the non-standardized signal Px by the standard deviation σx of the noise

term εx, the formula becomes:

Sx

σx

=
kP

x

σx

Px +
εx

σx

(7.4)

S̄x = k̄P
x Px + ε̄x = ρP

x . (7.5)

Because πP
x = f(ρP

x ), the equalization session that precedes the experiment was used

to equalize the perceived curvature πC
x of the single cue condition (πC

m = πC
t = πC

s ) and

therefore to equalize also ρP
x . The simulated property P in all the conditions of the

equalization session was the curvature Ce = 1.5, so we can substitute in ρC
m = ρC

t = ρC
s

and from these values and we obtain:

k̄C
m1.5 + ε̄m = k̄C

t 1.5 + ε̄t = k̄C
s 1.5 + ε̄s. (7.6)

ε̄x has equal variance and mean 0 because it was standardized of the standardization,

so it becomes evident that the equalization produced k̄C
m = k̄C

t = k̄C
s that we can
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summarize as k̄C
e .

Underestimation

The apparent underestimation of depth with single cue stimuli can be explained by

the IC Model and the formulas provided above. In fact, if the single cue test stimulus

provides a value of ro ρ = σx = kxS that has to be equal to the one provided

by the probe stimulus ρ = σprobe = S ′
√

k2
m + k2

t + k2
s . Assuming k is equal for the

cues composing the probe (because of the equalization), ρ = S ′kcue

√
3 = kcueS =

kcue{1.0, 1.6}. Therefore it is possible to calculate the expected value of the stretch

of the probe that matches the single cue stimuli to be S ′ = kcue{1.0,1.6}
kcue

√
3

= {0.57, 0.96}.

The values obtained are not statistically different from the ones predicted by the IC

Model (2 tails, t(5) = 1.5292, p = 0.19; t(5) = −0.7023, p = 0.51).

Multiple cues

When stimuli contain n cues the IC Model indicates that the perceived property ρP
n

can be determined by analyzing the conditions where the cues composing the stimuli

are presented in isolation. For the IC Model, the ρP
n value can be simply estimated

from the values of ρP
x by a simple Pythagorean equation ρP

n =
√∑

(ρP
i )2. With two

cues present in the display (test stimulus) the ρP
n for two combined cues is:

ρP
2 =

√
ρP

a
2 + ρP

b
2
, (7.7)
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whereas for a probe stimulus that is composed of the three cues ρ is:

ρP
3 =

√
ρP

m
2 + ρP

t
2
+ ρP

s
2. (7.8)

For every cue in isolation, the IC model defines ρP
x to be equal to the scaled retinal

signal which in turn is equal to ρP
x = k̄P

x Px. Substituting this quantity for each cue in

the formulas above, it is possible to calculate: the value of ρP
n for a property P and

n cues from kP
x , the values of the singles standardized proportionality constant of the

cue x, and Pn, the value of the simulated property of the stimulus. For displays that

contain two cues as test cue pair test stimulus ρP
2 is:

ρP
2 = P2

√
k̄P

a

2
+ k̄P

b

2
. (7.9)

Similarly, for the probe stimulus ρ is:

ρP
3 =

√
(k̄P

mP3)2 + (k̄P
t P3)2 + (k̄P

s P3)2 = P3

√
k̄P

m

2
+ k̄P

t

2
+ k̄P

s

2
. (7.10)

For curvature, the equalization session has the effect of equating k̄P
x for different cues,

so that

ρC
x = k̄C

e Cx. (7.11)
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So, for curvature we should find that

ρC
3 =

√
ρC

a
2 + ρC

a
2 + ρC

a
2 =

√
k̄C

e Ce
2
+ k̄C

e Ce
2
+ k̄C

e Ce
2

= k̄C
e Ce

√
3. (7.12)

Task

These formulas predict the behavior of the visual system with two cues from the

data obtained in the single cue. In the experimental sessions, we ask participants to

compare the probe stimulus to the test stimulus to find the PSE for a property P .

In this case in the two types of comparison at the PSE the equalities πP
3.2 = πP

2 and

πP
3.1 = πP

x are satisfied. According to the formulas above for the comparison with the

single cue stimulus, we can write

P3.1

√
k̄P

m

2
+ k̄P

t

2
+ k̄P

s

2
= k̄P

x Px (7.13)

where P3.1 is value of the simulated property P for the probe stimulus when compared

with the single cue test. From this equality, we derive k̄P
x :

k̄P
x =

P3.1

Px

√
k̄P

m

2
+ k̄P

t

2
+ k̄P

s

2
(7.14)

that can be used to predict what value of P3 we should obtain when the probe is

compared with a stimulus defined by two cues. In fact, if for simplicity we define
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∑
=

√
k̄P

m

2
+ k̄P

t

2
+ k̄P

s

2
, ρP

3 = ρP
2 can be written as:

P3.2

∑
= P2

√
k̄P

a

2
+ k̄P

b

2
(7.15)

where it is possible to substitute k̄P
x to obtain:

P3.2 =
P2

√
(P3.a

Px

∑
)
2
+ (P3.b

Px

∑
)
2

∑ (7.16)

P3.2 =
P2

Px

√
P3.a

2 + S3.b
2 (7.17)

Equation 7.17 allows me to make predictions about cue combination from single

cue measurements without any free parameter or weight. For tasks involving 2 cues,

the perceived amount πP
2 of the shape property P measured in the experiment as

the PSE value P3.2 can be calculated from the PSE values P3.x obtained for stimuli

defined by the cue composing the pair. If the simulated properties in the single cue

and paired-cue condition are equal, the formula reduces to the sum of the squares of

the values.

This result can be explained by the fact that neither of the cues present in the

display, shading and texture, provides direct information for depth. Depth can be

computed using an indirect method that results in more error in the estimation and

a consequent lower quantity of depth in the display.

Figure 7.3 indicates the predicted values of SP
3.2 made using the corresponding
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Figure 7.3: Predictions of the values of the stretch factor in the cue pair condition
made using the values obtained experimentally in the single-cue conditions.

values of SP
3.1 superimposed on the data from Experiment 2. The pattern across

surface properties matches the data for all cues but one: motion-texture for curvature

(S = 1.66). Most of the values fall within one standard error of the observer’s means.

The only quantitative difference is in the velocity-texture stimulus. This stimulus

bears values of the perceived that are higher than expected. This effect is probably

due to the interaction of motion and texture cues, a factor that was not considered in

the predictions because it is created by the interaction of the cues. The deformation

of the texture elements in time that happens when both cues are present creates an

additional image signal that can be used to estimate information about shape. This

information has an additive effect to the value of S because it can be considered as a

third cue in the computation of ρ in the paired-cue stimulus. To verify this possibility,
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I modified the formula 7.17 for this condition so that

SP
3.2 =

√
P3.a

2 + S3.b
2 + (

P3.a

2
+

P3.b

2
)
2

(7.18)

Notice that the same cue interaction is present on the probe stimulus. However, here

we should expect no modification in the expected value, because the influence of such

information was present in both single and paired cue conditions, therefore canceling

out in the term Σ in formula 7.17. This modification provides a new estimate that is

not different from the one registered experimentally as depicted in figure 7.3. These

findings accounts for the two known cues, motion and texture, and a third cue ’D’,

with a value in isolation approximated as the mean of the S in the other conditions.

Figure 7.4: Predictions of the values in the cue pair condition modified according to
the equation 7.18 and superimposed to the experimental results.

The pattern of responses and the predictions of a cue-integration scheme that
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keeps the computation separate for each property allows me to conclude that cues

have a different influences in the specification of shape properties and, that the visual

system keeps separate the estimates of the shape properties also when combining cues.

Perceived properties of a shape containing multiple cues are mutually inconsistent,

but can be predicted from the perceived properties from single-cue stimuli.

As anticipated in the discussion of the previous experiment, this result may be

consistent with the presence of cues to flatness in the display. When a cue is present

in isolation it might be claimed that all other cues specify a flat surface. The absence

of a cue specifies a flat surface, so all absent cues should specify the same surface

and can be accounted for by a decrease in the perceived property that is inversely

proportional to the number of cues present in the display. If more cues are present in

the display, the perceived properties increase because there are less cues specifying a

flat surface. It must be notice that cues to flatness do not alone explain this data.

If cues specify the properties of shape in an equal manner, the results should be

consistent across properties. Perceived properties should be equal because derived

from the same representation and the same image signals. The data I collected

can be obtained only if cues are differently informative for the different tasks. This

mechanism implies the existence of different representation of the shape. So whether

the IC model or cues to flatness offer an adequate explanation of these results, the two

are identical with respect to the explanation I propose: cue properties are perceived

independently.
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Chapter 8

Experiment 3: Surface

reconstruction

145
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In the experiments described in chapters 6 and 7 I tested the hypothesis that cues

convey different information. The methodology used in the first experiment allowed

me to compare stimuli containing different cues and estimate their differential con-

tribution to the estimation of properties. The probe used in the second experiment

allowed me to estimate directly the influence of each cue and cue pair for each prop-

erty. However, the judgment performed by the subjects was made on different parts

of the stimulus.

In this experiment I had participants estimate different properties at the same

position of the stimuli to rule out the possibility that perceived shape is just deformed

instead of being multiply represented. To show what the perceived shape looks like I

combined different judgments across the surface and reconstruct it with the average

result obtained for each subject.

To reduce the number of trials needed for such a reconstruction I substituted

an method of adjustment for the method of constant stimuli used in the previous

experiment. Participants modified the shape of the 3-cue probe stimulus by contin-

uously changing the stretch factor. The task was to make the perceived property at

a determined point match the magnitude of the property on a test surface on the

corresponding point.
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8.1 Method

Six undergraduate students näıve to the purpose of the study participated in the

experiment, which began with an equalization session. The method of equalization

was conceptually similar to that described in Section 5.2, but some modifications were

made in order to use the method of adjustment. The participants were presented with

the probe stimulus containing three cues and the test stimulus. The test stimulus

had a stretch factor S = 0.2 and in different trials contained each of the three cues in

isolation. The shading and motion cues had different values of rotation or illumination

direction in different trials. Participants modified the shape of the left surface by

increasing and decreasing the stretch factor using the keyboard in order to match the

perceived curvature at the center. The shape of the surface was recomputed on-line

as described below. A regression on the values of adjusted stretch was used to find

the values of rotation and illumination that yield a perceived curvature equal to the

average value adjusted with the texture stimulus.

The probe stimulus differed slightly from that described in the general methods

in Section 5.1. The position of the spheres used to create the texture was randomized

in the volume, instead of having the center on the surface. The minimum distance

between the spheres was equal to 2 times the radius of the spheres (2 ∗ 0.5cm).

When adjusted, the surface was calculated using different stretch factors, so that

it intercepted different spheres and the intersected shape and size changed. The

shading and motion cues were not modified from the original scheme, but they were
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recalculated at every modification of the surface. The two stimuli, probe and test,

were presented simultaneously to the subject and the viewing time was not restricted.

The difference in phase of the rotation was randomized at every trial.

Depending on the required judgement one or two yellow antialiased dots were

superimposed on the stimulus along the vertical axis. For depth judgments one dot

was positioned on the center of the surface and the other dot identified the position

where the judgment should be made. For slant and curvature judgment only the dot

identifying the location was present. Six positions were evaluated in different trials at

a distance of 0.40, 1.25, 2.10, 2.90, 3.75, 4.60 cm from the center of the stimuli along

the vertical. The motion of the dots was consistent with the simulated 3D rotation of

the stimulus, so the dots appeared as being as small light sources like LEDs positioned

on the surface.

Figure 8.1: Appearance of the probe (left) and test (right) stimuli in this experiment.
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There were 108 different conditions: six cue conditions, six position conditions

and the three task conditions. The cue conditions were divided into two groups as in

the previous experiment, three single-cue and three paired-cue. Participants that did

not complete at least two adjustments per condition in two 25-minutes sessions were

discarded from the analysis.

8.2 Results

The value of the stretch factor for each position, cue, and task averaged across ob-

servers is depicted in figure 8.2. The adjusted shape for the motion cue was sys-

tematically higher when judging depth. For texture, the higher value was slant. For

shading the higher value was curvature, but instead of a constant stretching factor

across the image, subjects reported higher values of curvature at the center. For the

motion-texture stimulus, the values differentiate only in the middle of the radial ex-

tent, where depth is higher than slant and curvature is lower. For the motion-shading

stimulus depth and slant are higher on the middle of the radial extent as well. For

texture and shading, curvature has a peak at the center and slant decreases as with

the radial distance.

To compare these results with the ones obtained in the second experiment de-

scribed in Chapter 6, I computed the average of the adjusted values of the stretch

factor across the position conditions. These values are also shown in figure 8.3. Mo-

tion has higher values for depth, texture for slant and shading for curvature. the
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motion-texture and the motion-shading stimulus have higher values of depth and

slant and lower value of curvature. The texture-shading stimulus has a lower value

of depth.

Figure 8.2: Adjusted stretch factor for the different conditions.

A 3 (task: depth, orientation, curvature) x 6 (stimuli) x 6 (height) repeated

measures ANOVA on the adjusted stretch factor values revealed a main effect of

stimuli (F (5, 25) = 13.494, p < 0.001) and height (F (5, 25) = 2.710, p < 0.05). The

interactions between task and stimulus (F (10, 50) = 5.442, p < 0.001) and between

stimulus and height (F (50, 250) = 1.611, p < 0.05) were also significant.

Using the data collected in the different conditions, I reconstructed the surfaces

perceived by the subjects in each condition. From the value of the stretch factor, it

is possible to use table 5.1 to find the value of the geometric property at the different
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Figure 8.3: Adjusted stretch factor averaged across position on the surface.

points. Depth values are equivalent to the depth profile of the perceived surface. Slant

values can be used to build a profile by integrating from the center of the stimulus.

Curvature values can also be used for a numerical integration by assuming that at

the center the perceived slant is 0. The surfaces obtained are shown in figure 8.4.

8.3 Discussion

The values of the stretch factor obtained in this experiment confirm that the data

obtained in the second experiment, discussed in Chapter 6, cannot be explained by a

unique representation of shape. In this experiment the judgments were performed on

the same positions across the surface, but judgments of different properties produced
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Figure 8.4: Surfaces reconstructed from the value of the adjusted stretch factor.
The right side is obtained from the average values of the stretch factor across ob-
servers. The left side represents the different surfaces obtainable with with values
within one standard error from the mean.
Top row: motion, texture, shading. Bottom row: motion-texture, motion-shading,
texture-shading.
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inconsistent results for the same shapes. Pooling results across positions on the surface

(figure 8.3) creates a similar pattern of responses obtained previously for the single

cue stimuli (Figure 7.1) and somewhat resembling for the combined cue (Figure 7.2).

The correlation between the average data collected in this experiment and Experiment

2 is r2 = 0.6974 for S = 1.00 and r2 = 0.7535 for S = 1.66. Actually, the pattern

for the single cue stimuli appears even more extreme than the one obtained above.

The cues appear to have inconsistent properties when analyzed in isolation. For

the combined condition, instead, the difference between tasks is less salient. While

testing the experiment myself (the data is not reported) I realized that it is very easy

to adjust the overall shape of the surface, rather than the local shape. This tendency

is enhanced with multiple cues; having the test surface a greater stretch factor, the

two shapes look more alike. The more information there is in the stimulus, the least

the “beholder share”. This pattern of responses cannot be produced by a single

representation of a surface with Euclidean properties.

The data collected allows reconstruction of a shape that is most consistent with the

perceived properties at each point. Figure 8.4 shows that the reconstructed shape for

single cue stimuli is consistent with the data of the previous experiments, confirming

that cues carry different types of information about shape. The shape reconstructed

with evaluation of motion information shows that perceived depth yields a more

elongated profile. Texture results in judgments of more curvature and slant while

shading produces higher magnitude of curvature only. The above results refer to
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overestimation with respect to the other geometric properties of the same stimuli.

Using the adjusted values obtained in the single cue conditions I estimated the

values of stretch factor in the combined cue conditions according to the Formula

7.17 and then reconstruct the shape of paired-cue stimuli. This procedure creates

surfaces very similar to the ones obtained using the adjustments in the cue pair

conditions (Figure 8.5). Although it is still not possible to exclude that these results

have been produced by the effect of other processes, they are consistent with the

proposed explanation of a combination of cues that happens in isolation for each

of the properties. Moreover, the values of the adjusted properties for each spatial

position with single cues are predictive of the values obtained for the same locations

in multi cue stimuli. This indicates that the values of the perceived properties at one

location are combined across cues to determine the perceived property at locations

on the cue combined stimulus. This result shows that the information from each cue

is combined only in isolation in the spatial domain. Information from neighborhood

regions has only limited influence in the perception of local shape properties.

It is important to underline that, although I do not exclude global processing

of image signals such as what is necessary to compute the parameters discussed in

Section 3.5, the reconstruction performed here in both cases does not rely on any other

information (global processing, priors, or assumptions) and it is obtained without free

parameters. On the other hand, it is possible to conceive other types of explanation for

these results. For example, it is possible that a Bayesian description of the perceptual
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process would predict the same type of results. To attempt this explanation, it is

necessary to describe correctly three probability distributions: the likelihood function,

that relates the image signals and the value of the perceived properties; the prior

distribution, the description of the natural frequency of occurrence of the property

in the environment; and the decision rule, the description of cost and gains of the

response as evaluated by the subjects. The data collected can either be due to the

use of a different decision rule when judging properties or to the different geometrical

relation of the properties to the signal. The latter explanation requires much more

analysis than the one provided in this work because each of the functions needs to

be characterized experimentally before being able to make a prediction. I would

like also to underline that the functions relative to different properties are related

by the same geometrical relations analyzed in Chapter 2. The same geometrical

relation relates both the likelihood and the prior of two properties. Therefore if no

other factors are involved, cues may produce estimates that are inconsistent across

properties. Nevertheless, different cues should produce the same pattern of responses

because the signals are affected by the same geometric relation of the distributions.

Therefore, the likelihood and prior distributions alone cannot predict the different

pattern of responses created by each of the cues used in this experiment. On the other

hand, the possibility that the decision rule could account for these results cannot be

discarded from the data collected in this experiment. Although no feedback was used

in any of the conditions, the subjects could have adopted a different decision rule
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for each of the properties. It is not possible to characterize the decision rule in any

manner, given the experimental conditions used here. In principle, a decision rule

that explain these results exist and cannot be ruled out.

Figure 8.5: Right branch: reconstructed profile created using the responses in the
paired-cue conditions. Left branch: predicted profile in the paired-cue condition
created using responses in the single-cue conditions. Left: motion-texture. Center:
motion-shading. Right: texture-shading.
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“There is a road from the eye to heart that does not go through the

intellect.” G. K. Chesterton

Shape perception is dependent on the analysis of information conveyed by cues

created by the projection of a visible surfaces onto the retina. It is possible to identify

the information used to estimate shape and to relate this information to different

geometrical aspects of the environment. This information can be thought of as image

signals measured by the visual system in order to estimate shape. The measurement

and subsequent estimate are affected by noise, but the effect of this noise depends

on the computations performed on the image signals. Estimates differ in precision

because of the effect of noise in the measurements, complexity of computations, and

spatial encapsulation of the processing. In certain cases, the measurements are simple

to make, the estimates are linearly related to the signals, and the computation can be

performed on local measurements. In other cases, the measurements are affected by

large amounts of noise, the computations are performed on a large area of the image,

many parameters are required, and the solution is not linearly related to the image

signals.

This classification resembles a classical dichotomy in the study of perception that

revolves around the question of direct vs. indirect perception1. According to the

indirect approach to perception, shape perception is conceived as a problem of inverse

geometry, where perception is the recovery of the Euclidean structure of objects. A

1Similarly to Haeckel’s “biogenic law”, there is a resemblance between the ontology (the study
of the basic categories of being) of shape perception and its philology (the study of ancient texts).
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controversial argument for direct perception was proposed by (Gibson, 1979), when

he described visual perception in terms of “direct pickup” of information contained

in the optic array. According to this view, inference, computational mechanisms and

representation are superfluous concepts. Information about the estimates are simply

detected in the optic array. The detection mechanism depends on the nature of the

pattern but the interpretation process depends only the properties being computed.

The data reported in this work supports a characterization of cues in terms of the

noise in the estimate. In contrast to the assumptions from the classical approach to

shape perception, the data indicate that this estimate depends also on the geometric

property considered. Three-dimensional shape can be described by different geometric

properties like relative depth, local orientation and curvatures (e.g. Koenderink et al.,

1996). Most of the psychophysical research on 3D shape perception asserts that cues

are equally informative for every 3D property(Bülthoff & Mallot, 1990). However,

I provide empirical evidence that cues are differently informative about geometric

properties of shape.

Perceived properties are mutually inconsistent and their magnitudes depends on

the mathematical relation between image signal and geometry of the property. Using

a simulated observer, I showed that this relation can be quantified to predict the

perceived magnitude of the geometric properties. The results obtained in the first

experiment (Chapter 6) with perceptual comparisons of single cue stimuli show a

similar pattern.
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The inconsistencies between the perceived magnitude of different properties im-

plies that they are perceived independently. Perceived properties of shape are com-

puted from the image signals, and there is no single representation that resolves

these inconsistencies. The shapes reconstructed from local judgments of geometric

properties in different positions are qualitatively different when the properties con-

vey different information about shape. My results cannot be accounted for with any

single Affine or Euclidean representation of shape.

Despite the possible advantages resulting from combining information character-

ized by different noise patterns, the data show that when cues are combined by

the visual system the combination happens independently for each property. I have

demonstrated that the IC model, a non linear model of cue integration, can be mod-

ified to account for my results. The judgments of properties in multi-cue stimuli can

be predicted from the same judgments on in single-cue stimuli. The modification to

the IC model requires each image signal to be represented only in the appropriate

“signal space” (see Domini et al., 2006) according the information that it carries. The

combination of the signals then happens only within each signal space. The MWF

instead cannot be modified in such a way because one of the required mechanism is

the promotion of cues. The computations involved change the information carried

by the cues and all cues become informative about depth. This requirement of the

MWF precludes any possible modification that could account for the data collected

in this dissertation.
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In the first pages of this work I described the qualitative shape of an apple on

my desk in my own words. This description gave you the reader a mental image of

the shape of the apple, but this description is not sufficient to convey my perceptual

experience. Because I am not describing my experience using the language of the

visual system I cannot describe my percept. It is still not clear what the basic

properties estimated by the visual system are. We recognize that the shape of the

apple is perceived through its geometric properties. My contribution has been to prove

that the computations of these properties from the image signals are kept separate

by the visual system. This is an important step in furthering our understanding of

perception but it still leaves many questions unanswered. Although this might seem

like a complication, it demonstrates that the representation of shape by the visual

system is of the simplest form possible.
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